Modified Runge-Kutta methods for the numerical solution of ODEs with oscillating solutions
暂无分享,去创建一个
[1] John P. Coleman,et al. Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .
[2] C. Grossmann,et al. Directional approximation of the jacobians in ROW-methods , 1991 .
[3] M. M. Chawla,et al. Two-step fourth-order P-stable methods with phase-lag of order six for y ″=( t,y ) , 1986 .
[4] A. D. Raptis,et al. A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .
[6] M. M. Chawla,et al. An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .
[7] P. J. Van Der Houmen,et al. Predictor-corrector methods for periodic second-order initial-value problems , 1987 .
[8] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[9] T. E. Simos. Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .
[10] Ben P. Sommeijer,et al. Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .
[11] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[12] Ben P. Sommeijer,et al. Phase-Lag Analysis of Implicit Runge–Kutta Methods , 1986 .
[13] R. Thomas,et al. Phase properties of high order, almostP-stable formulae , 1984 .
[14] T. E. Simos,et al. Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .
[15] L. Brusa,et al. A one‐step method for direct integration of structural dynamic equations , 1980 .
[16] P. J. Prince,et al. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy , 1978 .
[17] Theodore E. Simos,et al. A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem , 1991, Int. J. Comput. Math..