Modified Runge-Kutta methods for the numerical solution of ODEs with oscillating solutions

Three new modified Runge-Kutta methods with minimal phase-lag are developed for the numerical solution of ordinary differential equations with oscillating solutions. These methods are based on the well-known Runge-Kutta method of Dormand and Prince RK5(4)T (see [1]) of order five. Numerical and theoretical results show that this new approach is more efficient compared with the well known classical fifth-order Runge-Kutta Dormand and Prince method.

[1]  John P. Coleman,et al.  Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[2]  C. Grossmann,et al.  Directional approximation of the jacobians in ROW-methods , 1991 .

[3]  M. M. Chawla,et al.  Two-step fourth-order P-stable methods with phase-lag of order six for y ″=( t,y ) , 1986 .

[4]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[6]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[7]  P. J. Van Der Houmen,et al.  Predictor-corrector methods for periodic second-order initial-value problems , 1987 .

[8]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[9]  T. E. Simos Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .

[10]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[11]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[12]  Ben P. Sommeijer,et al.  Phase-Lag Analysis of Implicit Runge–Kutta Methods , 1986 .

[13]  R. Thomas,et al.  Phase properties of high order, almostP-stable formulae , 1984 .

[14]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[15]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[16]  P. J. Prince,et al.  New Runge-Kutta algorithms for numerical simulation in dynamical astronomy , 1978 .

[17]  Theodore E. Simos,et al.  A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem , 1991, Int. J. Comput. Math..