Spatially and temporally complete Landsat reflectance time series modelling: The fill-and-fit approach

[1]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[2]  Wout Verhoef,et al.  Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images , 1993 .

[3]  L. Eklundh,et al.  Fourier series for analysis of temporal sequences of satellite sensor imagery , 1994 .

[4]  Aaron Moody,et al.  Land-Surface Phenologies from AVHRR Using the Discrete Fourier Transform , 2001 .

[5]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[6]  D. Roy,et al.  The MODIS Land product quality assessment approach , 2002 .

[7]  Brian L. Markham,et al.  Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[9]  Charles D. Ghilani,et al.  Adjustment Computations: Spatial Data Analysis , 2006 .

[10]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  John F. Hermance,et al.  Stabilizing high‐order, non‐classical harmonic analysis of NDVI data for average annual models by damping model roughness , 2007 .

[12]  B. Wardlow,et al.  Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains , 2007 .

[13]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[14]  David P. Roy,et al.  Generation of Temporally Complete Daily Nadir MODIS Reflectance Time Series , 2010 .

[15]  M. Schaepman,et al.  Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 , 2009 .

[16]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[17]  Hugo Carrão,et al.  A Nonlinear Harmonic Model for Fitting Satellite Image Time Series: Analysis and Prediction of Land Cover Dynamics , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[18]  R. Mueller,et al.  The 2009 Cropland Data Layer. , 2010 .

[19]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[20]  William J. Sacks,et al.  Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance , 2011 .

[21]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .

[22]  A. Gitelson,et al.  Remote estimation of crop gross primary production with Landsat data , 2012 .

[23]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[24]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[25]  Sergio M. Vicente-Serrano,et al.  Response of vegetation to drought time-scales across global land biomes , 2012, Proceedings of the National Academy of Sciences.

[26]  Valerie A. Thomas,et al.  Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[28]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[29]  D. Roy,et al.  Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction☆ , 2014 .

[30]  Brian L. Markham,et al.  Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) , 2014, Remote. Sens..

[31]  Julien Michel,et al.  A Scalable Tile-Based Framework for Region-Merging Segmentation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[33]  Michael Schmidt,et al.  A Framework for Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics , 2016, Remote. Sens..

[34]  Hankui K. Zhang,et al.  Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. , 2016, Remote sensing of environment.

[35]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[36]  Hankui K. Zhang,et al.  A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance , 2016 .

[37]  Lonesome Malambo,et al.  A Multitemporal Profile-Based Interpolation Method for Gap Filling Nonstationary Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Jan Verbesselt,et al.  Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series , 2016, PloS one.

[39]  David P. Roy,et al.  A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring , 2017, Remote. Sens..

[40]  David M. Johnson,et al.  Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[41]  D. Lobell,et al.  Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries , 2017 .

[42]  Lin Yan,et al.  Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS) , 2018, Remote. Sens..

[43]  G. Henebry,et al.  Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery , 2018, Agricultural and Forest Meteorology.

[44]  Stefan Adriaensen,et al.  Atmospheric Correction Inter-comparison eXercise , 2018, Remote. Sens..

[45]  James R. Irons,et al.  Landsat's Enduring Legacy: Pioneering Global Land Observations from Space , 2018 .

[46]  Matthew F. McCabe,et al.  Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data , 2018, Remote. Sens..

[47]  David P. Roy,et al.  Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability , 2018, Remote. Sens..

[48]  Valerie A. Thomas,et al.  Using Window Regression to Gap-Fill Landsat ETM+ Post SLC-Off Data , 2018, Remote. Sens..

[49]  David P. Roy,et al.  Analysis Ready Data: Enabling Analysis of the Landsat Archive , 2018, Remote. Sens..

[50]  B. Basso,et al.  Seasonal crop yield forecast: Methods, applications, and accuracies , 2019, Advances in Agronomy.

[51]  David P. Roy,et al.  Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach , 2019, Remote Sensing of Environment.

[52]  Zhe Zhu,et al.  Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data , 2018, Remote. Sens..

[53]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[54]  Patrick Hostert,et al.  Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning , 2019, Remote. Sens..

[55]  Patrick Hostert,et al.  Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping , 2019, Remote Sensing of Environment.

[56]  Lin Yan,et al.  Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring , 2019, Remote. Sens..

[57]  D. Roy,et al.  Robust Landsat-based crop time series modelling , 2020 .

[58]  Qiang Zhou,et al.  Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach , 2020, Remote Sensing of Environment.