Impact of die-to-die and within-die parameter variations on the throughput distribution of multi-core processors

A statistical performance simulator is developed to explore the impact of die-to-die (D2D) and within-die (WID) parameter variations on the distributions of maximum clock frequency (FMAX) and throughput for multi-core processors in a future 22nm technology. The simulator integrates a compact analytical throughput model, which captures the key dependencies of multi-core processors, into a statistical simulation framework that models the effects of D2D and WID parameter variations on critical path delays across a die. The salient contributions from this paper are: (1) Product-level variation analysis for multi-core processors must focus on throughput, rather than just FMAX, and (2) Multi-core processors are inherently more variation tolerant than single-core processors due to the larger impact of memory latency and bandwidth on overall throughput. To elucidate these two points, multi-core and single-core processors have a similar chip-level FMAX distribution (mean degradation of 9% and standard deviation of 5%) for multi-threaded applications. In contrast to single-core processors, memory latency and bandwidth constraints significantly limit the throughput dependency on FMAX in multi-core processors, thus reducing the throughput mean degradation and standard deviation by 50%. Since single-threaded applications running on a multi-core processor can execute on the fastest core, mean FMAX and throughput gains of 4% are achieved from the nominal design target.

[1]  Vivek De,et al.  Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[2]  R. Schaller,et al.  Technological innovation in the semiconductor industry: A case study of the International Technology Roadmap for Semiconductors (ITRS) , 2001, PICMET '01. Portland International Conference on Management of Engineering and Technology. Proceedings Vol.1: Book of Summaries (IEEE Cat. No.01CH37199).

[3]  James E. Smith,et al.  A first-order superscalar processor model , 2004, Proceedings. 31st Annual International Symposium on Computer Architecture, 2004..

[4]  S. Tam,et al.  A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[5]  D. B. Davis,et al.  Intel Corp. , 1993 .

[6]  P. Bai,et al.  A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[7]  Atsushi Kurokawa,et al.  Challenge: variability characterization and modeling for 65- to 90-nm processes , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[8]  Doris Schmitt-Landsiedel,et al.  The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits , 1996, ISLPED '96.

[9]  C. Webb,et al.  A scalable X86 CPU design for 90 nm process , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[10]  David A. Ameen Systems Performance Evaluation , 1989, Concurr. Pract. Exp..

[11]  David A. Wood,et al.  Using compression to improve chip multiprocessor performance , 2006 .

[12]  D. Schmitt-Landsiedel,et al.  The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[13]  M. Horowitz,et al.  How scaling will change processor architecture , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[14]  S. G. Duvall,et al.  Statistical circuit modeling and optimization , 2000, 2000 5th International Workshop on Statistical Metrology (Cat.No.00TH8489.

[15]  K. Bernstein,et al.  Scaling, power, and the future of CMOS , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[16]  James D. Meindl,et al.  Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration , 2002, IEEE J. Solid State Circuits.

[17]  P.P. Gelsinger,et al.  Microprocessors for the new millennium: Challenges, opportunities, and new frontiers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[18]  Avner Kornfeld,et al.  Estimation of FMAX and ISB in microprocessors , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).