Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality

Abstract. The purpose of this study was to develop strategies for optimal image reconstruction in multidetector-row cardiac CT and to discuss the results in the context of individual heart rate, cardiac physiology, and technical prerequisite. Sixty-four patients underwent multidetector-row cardiac CT. Depending on the heart rate either a single-segmental reconstruction (SSR) or an adaptive two-segmental reconstruction (ASR) was applied. Image reconstruction was done either antegrade (a) or retrograde (r) in relation to the R-peak. Reconstruction of all data sets was performed at multiple time points within the t-wave/p-wave interval, differing from each other by 50 ms. In addition, each reconstruction was assigned to one of six reconstruction intervals (A–F), each corresponding to a specific event in the cardiac cycle. While no significant time points were found for absolute values, the following interval/reconstruction technique combinations provided significant better image quality: F/r at HR <60 bpm for all coronary segments (p≤0.004) and at HR 60–65 bpm for segments 5–10 (p≤0.001); B/a at HR 60–65 bpm for segments 1–4 and 11–15 (p<0.001) and at HR >65 bpm for all segments (p≤0.002). The results show that in order to achieve optimal image quality, image reconstruction has to be adjusted to each patient's ECG curve and heart rate individually. The moment of reconstruction should be determined as absolute rather than as relative distance from the previous R-peak.

[1]  E. Starling,et al.  The regulation of the heart beat , 1914, The Journal of physiology.

[2]  C. Wiggers STUDIES ON THE CONSECUTIVE PHASES OF THE CARDIAC CYCLE: II. The Laws Governing the Relative Durations of Ventricular Systole and Diastole , 1921 .

[3]  Carl J. Wiggers,et al.  STUDIES ON THE CONSECUTIVE PHASES OF THE CARDIAC CYCLE , 1921 .

[4]  A. Benchimol,et al.  The value of the apexcardiogram as a reference tracing in phonocardiography , 1961 .

[5]  T. Sakamoto,et al.  ON THE DURATION OF THE ISOVOLUMETRIC RELAXATION PERIOD (IVRP) IN DOG AND MAN. , 1964, American heart journal.

[6]  D. E. Gregg,et al.  Systemic and Coronary Energetics in the Resting Unanesthetized Dog , 1965, Circulation research.

[7]  A. Weissler,et al.  Left Ventricular Systolic Time Intervals as Indices of Postural Circulatory Stress in Man , 1970, Circulation.

[8]  H F Stegall,et al.  New method to measure phasic coronary blood velocity in man. , 1971, American heart journal.

[9]  A. Luisada,et al.  The phases of the cardiac cycle. , 1972, American heart journal.

[10]  Hans-Peter Koepchen,et al.  Herz und Kreislauf , 1972 .

[11]  T. Takaro,et al.  Observer Agreement in Evaluating Coronary Angiograms , 1975, Circulation.

[12]  W A Kalender,et al.  Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. , 1998, Medical physics.

[13]  S Schaller,et al.  [The technical bases and uses of multi-slice CT]. , 1999, Der Radiologe.

[14]  W. Kalender,et al.  [Subsecond multislice spiral CT as an alternative to electron beam computerized tomography]. , 2000, Zeitschrift fur Kardiologie.

[15]  M. F. Reiser,et al.  Erste Erfahrungen mit der Mehrzeilendetektorspiral-CT in der Diagnostik der Arteriosklerose der Koronargefäße , 2000, Der Radiologe.

[16]  C. Claussen,et al.  [Cardiac multidetector-row CT: first clinical results of retrospectively ECG-gated spiral with optimized temporal and spatial resolution]. , 2000, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[17]  T Flohr,et al.  [Initial experiences with multi-slice detector spiral CT in diagnosis of arteriosclerosis of coronary vessels]. , 2000, Der Radiologe.

[18]  A. Kopp,et al.  Multidetector CT des Herzens: Erste Klinische Anwendung einer retrospektiv EKG-gesteuerten Spirale mit optimierter zeitlicher und örtlicher Auflösung zur Darstellung der Herzkranzgefäße , 2000 .

[19]  Marc Kachelriess,et al.  ECG-correlated imaging of the heart with subsecond multislice spiral CT , 2000, IEEE Transactions on Medical Imaging.

[20]  C. Becker,et al.  [Cardiac imaging with rapid, retrospective ECG synchronized multilevel spiral CT]. , 2000, Der Radiologe.

[21]  W A Kalender,et al.  ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. , 2000, Medical physics.

[22]  W. Kalender,et al.  Subsekunden-Mehrschicht-Spiral-CT als Alternative zur Elektronenstrahlcomputertomographie , 2000, Zeitschrift für Kardiologie.

[23]  M F Reiser,et al.  ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. , 2001, Radiology.

[24]  B. Ohnesorge,et al.  Heart Rate Adaptive Optimization of Spatial and Temporal Resolution for Electrocardiogram-Gated Multislice Spiral CT of the Heart , 2001, Journal of computer assisted tomography.

[25]  C Georg,et al.  Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. , 2001, Radiology.

[26]  Matthijs Oudkerk,et al.  Coronary angiography with multi-slice computed tomography , 2001, The Lancet.

[27]  Werner Moshage,et al.  Detection of Coronary Artery Stenoses by Contrast-Enhanced, Retrospectively Electrocardiographically-Gated, Multislice Spiral Computed Tomography , 2001, Circulation.

[28]  A. Küttner,et al.  [Optimizing image reconstruction timing for the RR interval in imaging coronary arteries with multi-slice computerized tomography]. , 2001, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[29]  K. Engelmann,et al.  Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. , 2002, Radiology.