SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales

Abstract. This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.

[1]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[2]  M. Drévillon,et al.  Evaluation of global monitoring and forecasting systems at Mercator Océan , 2013 .

[3]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[4]  Jean-Raymond Bidlot,et al.  Approximate Stokes Drift Profiles in Deep Water , 2014, 1406.5039.

[5]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[6]  M. Bouin,et al.  Design and validation of MEDRYS, a Mediterranean Sea reanalysis over the period 1992–2013 , 2016 .

[7]  Jonathan Beuvier,et al.  Spreading of the Western Mediterranean Deep Water after winter 2005: Time scales and deep cyclone transport , 2012 .

[8]  C. Estournel,et al.  Low-order pressure gradient schemes in sigma coordinate models: The seamount test revisited , 2009 .

[9]  Kristian Mogensen,et al.  A coupled data assimilation system for climate reanalysis , 2016 .

[10]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[11]  M. Anguelova,et al.  On the variability of whitecap fraction using satellite‐based observations , 2013 .

[12]  John C. Warner,et al.  Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea , 2012 .

[13]  P. Trivero,et al.  Development of an atmosphere-ocean coupled model and its application over the Adriatic Sea during a severe weather event of Bora wind , 2004 .

[14]  Ocean Mixed Layer responses to intense meteorological events during HyMeX-SOP1 from a high-resolution ocean simulation , 2014 .

[15]  Bertrand Decharme,et al.  Reconciling soil thermal and hydrological lower boundary conditions in land surface models , 2013 .

[16]  Richard A Allard,et al.  The response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A coupled atmosphere–ocean approach , 2012 .

[17]  Anny Cazenave,et al.  Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage , 2010 .

[18]  Gary B. Brassington,et al.  Progress and challenges in short- to medium-range coupled prediction , 2015 .

[19]  Ivane Pairaud,et al.  Energy conservation issues in sigma-coordinate free-surface ocean models , 2008 .

[20]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[21]  S. Ştefănescu,et al.  An overview of the variational assimilation in the ALADIN/France numerical weather‐prediction system , 2005 .

[22]  Kristian Mogensen,et al.  712 Air-Sea Interaction and Surface Waves , 2013 .

[23]  R. Signell,et al.  Two-way air-sea coupling : A study of the adriatic , 2006 .

[24]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[25]  Stuart D. Smith Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature , 1988 .

[26]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[27]  F. Ardhuin,et al.  A suitable metocean hindcast database for the design of Marine energy converters , 2013 .

[28]  F. Habets,et al.  Simulation of a Scandinavian basin using the diffusion transfer version of ISBA , 2003 .

[29]  Bertrand Decharme,et al.  Introduction of a sub-grid hydrology in the ISBA land surface model , 2006 .

[30]  Kevin E. Trenberth,et al.  Distinctive climate signals in reanalysis of global ocean heat content , 2013 .

[31]  Romain Bourdallé-Badie,et al.  The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model , 2016 .

[32]  E. Heise,et al.  Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO , 2010 .

[33]  P. K. Taylor,et al.  The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves , 2001 .

[34]  F. Dumas,et al.  An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS) , 2008 .

[35]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[36]  Philip W. Jones First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates , 1999 .

[37]  Alina Barbu,et al.  The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , 2012 .

[38]  H. Charnock Wind stress on a water surface , 1955 .

[39]  C. Estournel,et al.  Modelling deep-water formation in the north-west Mediterranean Sea with a new air–sea coupled model: sensitivity to turbulent flux parameterizations , 2017 .

[40]  N. Booij,et al.  A third-generation wave model for coastal regions-1 , 1999 .

[41]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[42]  Aaron Boone,et al.  The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme , 2000 .

[43]  Judit Bartholy,et al.  Med-CORDEX initiative for Mediterranean climate studies , 2016 .

[44]  R. Signell,et al.  Coupled ocean-atmosphere nested modeling of the Adriatic Sea during winter and spring 2001 , 2003 .

[45]  C. Delire,et al.  Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model , 2015 .

[46]  Jonathan P. Taylor,et al.  Studies with a flexible new radiation code. II: Comparisons with aircraft short‐wave observations , 1996 .

[47]  F. Dumas,et al.  Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology , 2009 .

[48]  H. Douville,et al.  Global off-line evaluation of the ISBA-TRIP flood model , 2012, Climate Dynamics.

[49]  A. Benetazzo,et al.  On the use of a coupled ocean–atmosphere-wave model during an extreme Cold Air Outbreak over the Adriatic Sea , 2016 .

[50]  J. Dufresne,et al.  An interactive ocean surface albedo scheme: formulation and evaluation intwo atmospheric models , 2017 .

[51]  J. Dykes,et al.  Air-sea interaction in the Ligurian Sea: Assessment of a Coupled Ocean-Atmosphere Model using in situ data from LASIE07 , 2011 .

[52]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[53]  J. Bidlot,et al.  IMPACT AND FEEDBACK OF OCEAN WAVES ON THE ATMOSPHERE by P A , 2001 .

[54]  Jan Polcher,et al.  A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer , 2004 .

[55]  C. Estournel,et al.  Alternatives to the Robert–Asselin filter , 2012 .

[56]  Travis A. Smith,et al.  Tropical Cyclone Prediction Using COAMPS-TC , 2014 .

[57]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[58]  Etienne Leblois,et al.  The SAFRAN‐ISBA‐MODCOU hydrometeorological model applied over France , 2008 .

[59]  Jay Walter Larson,et al.  The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models , 2005, Int. J. High Perform. Comput. Appl..

[60]  S. Valcke,et al.  The OASIS3 coupler: a European climate modelling community software , 2012 .

[61]  A. Benetazzo,et al.  Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event , 2016 .

[62]  Paul Berrisford,et al.  The ERA-Interim Archive , 2009 .

[63]  J. Bidlot,et al.  User manual and system documentation of WAVEWATCH III R version 4.18 , 2014 .

[64]  Raluca Radu,et al.  Spectral nudging in a spectral regional climate model , 2008 .

[65]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[66]  Cecelia DeLuca,et al.  Design and Implementation of Components in the Earth System Modeling Framework , 2005, Int. J. High Perform. Comput. Appl..

[67]  Florence Habets,et al.  Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model , 2014 .

[68]  Sophie Valcke,et al.  Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0 , 2017 .

[69]  V. Ducrocq,et al.  High‐resolution air–sea coupling impact on two heavy precipitation events in the Western Mediterranean , 2017 .

[70]  A. Bondeau,et al.  Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model , 2009 .

[71]  N. Fourrié,et al.  AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods , 2015 .

[72]  John C. Warner,et al.  Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model , 2008, Comput. Geosci..

[73]  T Black,et al.  THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability. , 2016, Bulletin of the American Meteorological Society.

[74]  Aaron Boone,et al.  Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions , 2011 .

[75]  W. Perrie,et al.  Atmosphere–Ocean Coupled Dynamics of Cyclones in the Midlatitudes , 2004 .

[76]  Julie Pullen,et al.  Bora event variability and the role of air‐sea feedback , 2007 .

[77]  Harald Kunstmann,et al.  Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment , 2015 .

[78]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[79]  R. He,et al.  Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System , 2010 .

[80]  F. Marzano,et al.  HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean , 2013 .

[81]  Véronique Ducrocq,et al.  Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation , 2010 .

[82]  W. Oost,et al.  New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE , 2002 .