Optimization-based convex relaxations for nonconvex parametric systems of ordinary differential equations

Novel convex and concave relaxations are proposed for the solutions of parametric ordinary differential equations (ODEs), to aid in furnishing bounding information for deterministic global dynamic optimization methods. These relaxations are constructed as the solutions of auxiliary ODE systems with embedded convex optimization problems, whose objective functions employ convex and concave relaxations of the original ODE right-hand side. Unlike established relaxation methods, any valid convex and concave relaxations for the original right-hand side are permitted in the approach, including the McCormick relaxations and the $$\alpha $$ BB relaxations. In general, tighter such relaxations will necessarily translate into tighter relaxations for the ODE solutions, thus providing tighter bounding information for an overarching global dynamic optimization method. Notably, if McCormick relaxations are employed in the new approach, then the obtained relaxations are guaranteed to be at least as tight as state-of-the-art ODE relaxations based on generalized McCormick relaxations. The new relaxations converge rapidly to the original system as the considered parametric subdomain shrinks. Several examples are presented for comparison with established ODE relaxations, based on a proof-of-concept implementation in MATLAB. In a global optimization case study, the new ODE relaxations are shown to lead to fewer branch-and-bound global optimization iterations than state-of-the-art relaxations.

[1]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[2]  F. Clarke Generalized gradients and applications , 1975 .

[3]  Paul I. Barton,et al.  Bounds on the reachable sets of nonlinear control systems , 2013, Autom..

[4]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[5]  R. Baker Kearfott,et al.  The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..

[6]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[7]  Matthew D. Stuber,et al.  Generalized McCormick relaxations , 2011, J. Glob. Optim..

[8]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[9]  Paul I. Barton,et al.  Bounds on reachable sets using ordinary differential equations with linear programs embedded , 2016, IMA Journal of Mathematical Control and Information.

[10]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[11]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[12]  Julio R. Banga,et al.  Global Optimization of Bioprocesses using Stochastic and Hybrid Methods , 2004 .

[13]  Yurii Nesterov,et al.  Lectures on Convex Optimization , 2018 .

[14]  Paul I. Barton,et al.  DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis , 2014, BMC Bioinformatics.

[15]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[16]  L. Thibault On subdifferential of optimal value functions , 1991 .

[17]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[18]  Alexander Mitsos,et al.  Tighter McCormick relaxations through subgradient propagation , 2017, Journal of Global Optimization.

[19]  Benoît Chachuat,et al.  Convergence analysis of Taylor models and McCormick-Taylor models , 2013, J. Glob. Optim..

[20]  Benoît Chachuat,et al.  Bounding the Solutions of Parametric ODEs: When Taylor Models Meet Differential Inequalities , 2012 .

[21]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[22]  Paul I. Barton,et al.  Differentiable McCormick relaxations , 2016, Journal of Global Optimization.

[23]  Vincent Acary,et al.  Siconos: A Software Platform for Modeling, Simulation, Analysis and Control of Nonsmooth Dynamical Systems , 2007 .

[24]  Paul I. Barton,et al.  Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs , 2018, Journal of Global Optimization.

[25]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[26]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[27]  Max b. Müller Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen , 1927 .

[28]  Benoît Chachuat,et al.  Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control , 2014, J. Optim. Theory Appl..

[29]  Paul I. Barton,et al.  Tight, efficient bounds on the solutions of chemical kinetics models , 2010, Comput. Chem. Eng..

[30]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[31]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[32]  A Genovesi,et al.  Dynamical model development and parameter identification for an anaerobic wastewater treatment process. , 2001, Biotechnology and bioengineering.

[34]  Paul I. Barton,et al.  Efficient polyhedral enclosures for the reachable set of nonlinear control systems , 2016, Math. Control. Signals Syst..

[35]  Paul I. Barton,et al.  Improved relaxations for the parametric solutions of ODEs using differential inequalities , 2012, Journal of Global Optimization.

[36]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[37]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[38]  Paul I. Barton,et al.  Affine relaxations for the solutions of constrained parametric ordinary differential equations , 2018 .

[39]  Matthias Althoff,et al.  Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization , 2008, 2008 47th IEEE Conference on Decision and Control.

[40]  Nilay Shah,et al.  Quantitative framework for reliable safety analysis , 2002 .

[41]  Matthew D. Stuber,et al.  Convex and concave relaxations of implicit functions , 2015, Optim. Methods Softw..

[42]  W. Walter Differential and Integral Inequalities , 1970 .

[43]  Qing Nie,et al.  DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.

[44]  Alexander Mitsos,et al.  Multivariate McCormick relaxations , 2014, J. Glob. Optim..

[45]  Matthew E. Wilhelm,et al.  Global optimization of stiff dynamical systems , 2019 .

[46]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[47]  Xuejiao Yang,et al.  Efficient Reachability Bounds for Discrete-Time Nonlinear Systems by Extending the Continuous-Time Theory of Differential Inequalities , 2018, 2018 Annual American Control Conference (ACC).

[48]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[49]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[50]  Nikolaos V. Sahinidis,et al.  A hybrid LP/NLP paradigm for global optimization relaxations , 2018, Mathematical Programming Computation.

[51]  Julio R. Banga,et al.  Stochastic Dynamic Optimization of Batch and Semicontinuous Bioprocesses , 1997 .

[52]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[53]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[54]  Paul I. Barton,et al.  The cluster problem revisited , 2013, Journal of Global Optimization.

[55]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[56]  Alexander Mitsos,et al.  Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..

[57]  Paul I. Barton,et al.  Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models , 2018 .

[58]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[59]  A. M. Sahlodin,et al.  Convex/concave relaxations of parametric ODEs using Taylor models , 2011, Comput. Chem. Eng..

[60]  Paul I. Barton,et al.  Nonlinear convex and concave relaxations for the solutions of parametric ODEs , 2013 .

[61]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[62]  Julio R. Banga,et al.  Improved scatter search for the global optimization of computationally expensive dynamic models , 2009, J. Glob. Optim..

[63]  Miroslav Fikar,et al.  Global optimization for parameter estimation of differential-algebraic systems , 2009 .

[64]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[65]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[66]  Paul I. Barton,et al.  State event location in differential-algebraic models , 1996, TOMC.

[67]  Joseph K. Scott Reachability analysis and deterministic global optimization of differential-algebraic systems , 2012 .

[68]  Ian David Lockhart Bogle,et al.  Global optimisation for dynamic systems using interval analysis , 2017, Comput. Chem. Eng..

[69]  Sebastian Sager,et al.  Global optimal control with the direct multiple shooting method , 2018 .

[70]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[71]  Paul I. Barton,et al.  Switching behavior of solutions of ordinary differential equations with abs-factorable right-hand sides , 2015, Syst. Control. Lett..

[72]  Benoît Chachuat,et al.  Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs , 2015, J. Glob. Optim..

[73]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[74]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..