Multisensory‐based Approach to the Recovery of Unisensory Deficit

This chapter reviews several highly convergent behavioral findings that provide strong evidence for the existence of multimodal integration systems subserving spatial representation in humans. These systems generally function through the multisensory coding of visuoauditory and visuotactile events but vary in their specific functional and anatomical characteristics. The chapter will also consider the adaptive advantages of multisensory integration systems; these systems might modulate the level of activation in cortical areas in short‐ and long‐term ways, thereby providing a mechanism for permanent recovery from sensory and spatial deficits.

[1]  P. Haggard,et al.  Seeing the hand boosts feeling on the cheek , 2009, Cortex.

[2]  Caterina Bertini,et al.  Audio-visual stimulation improves oculomotor patterns in patients with hemianopia , 2009, Neuropsychologia.

[3]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[4]  Fabrizio Leo,et al.  Cross-modal localization in hemianopia: new insights on multisensory integration. , 2008, Brain : a journal of neurology.

[5]  P. Haggard,et al.  Can vision of the body ameliorate impaired somatosensory function? , 2007, Neuropsychologia.

[6]  S. Hillyard,et al.  Neural Basis of the Ventriloquist Illusion , 2007, Current Biology.

[7]  P. Haggard,et al.  Viewing the body modulates tactile receptive fields , 2007, Experimental Brain Research.

[8]  R. Hess,et al.  Selectivity of human retinotopic visual cortex to S‐cone‐opponent, L/M‐cone‐opponent and achromatic stimulation , 2007, The European journal of neuroscience.

[9]  Nadia Bolognini,et al.  Multisensory-Mediated Auditory Localization , 2006, Perception.

[10]  Wan Jiang,et al.  Multisensory orientation behavior is disrupted by neonatal cortical ablation. , 2007, Journal of neurophysiology.

[11]  Mark T. Wallace,et al.  Excitotoxic lesions of the superior colliculus preferentially impact multisensory neurons and multisensory integration , 2007, Experimental Brain Research.

[12]  Heidi Johansen-Berg,et al.  Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography. , 2006, Brain : a journal of neurology.

[13]  N. Bolognini,et al.  Visual search improvement in hemianopic patients after audio-visual stimulation. , 2006, Brain : a journal of neurology.

[14]  N. Bolognini,et al.  Visual localization of sounds , 2005, Neuropsychologia.

[15]  C. Spence,et al.  Multisensory Integration: Space, Time and Superadditivity , 2005, Current Biology.

[16]  Nadia Bolognini,et al.  Audiovisual Integration in Patients with Visual Deficit , 2005, Journal of Cognitive Neuroscience.

[17]  P. Haggard,et al.  Viewing the body prepares the brain for touch: effects of TMS over somatosensory cortex , 2005, The European journal of neuroscience.

[18]  Hans-Jochen Heinze,et al.  Task-relevant modulation of primary somatosensory cortex suggests a prefrontal–cortical sensory gating system , 2005, NeuroImage.

[19]  Barry E. Stein,et al.  The development of a dialogue between cortex and midbrain to integrate multisensory information , 2005, Experimental Brain Research.

[20]  Lee M. Miller,et al.  Behavioral/systems/cognitive Perceptual Fusion and Stimulus Coincidence in the Cross- Modal Integration of Speech , 2022 .

[21]  Katsushige Sato,et al.  Functional representation of the finger and face in the human somatosensory cortex: intraoperative intrinsic optical imaging , 2005, NeuroImage.

[22]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.

[23]  Hans-Jochen Heinze,et al.  Dynamic shifts in the organization of primary somatosensory cortex induced by bimanual spatial coupling of motor activity , 2005, NeuroImage.

[24]  C. Kennard,et al.  Distinct Cortical and Collicular Mechanisms of Inhibition of Return Revealed with S Cone Stimuli , 2004, Current Biology.

[25]  D. Whitaker,et al.  Sensory uncertainty governs the extent of audio-visual interaction , 2004, Vision Research.

[26]  G. Calvert,et al.  Multisensory integration: methodological approaches and emerging principles in the human brain , 2004, Journal of Physiology-Paris.

[27]  Tony Ro,et al.  Extrageniculate mediation of unconscious vision in transcranial magnetic stimulation-induced blindsight. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Christopher D. Carello,et al.  Target selection and the superior colliculus: goals, choices and hypotheses , 2004, Vision Research.

[29]  John J. Foxe,et al.  Multisensory Convergence in Early Cortical Processing. , 2004 .

[30]  Mark T. Wallace,et al.  Crossmodal spatial interactions in subcortical and cortical circuits , 2004 .

[31]  M. Wallace,et al.  Integration of multiple sensory modalities in cat cortex , 2004, Experimental Brain Research.

[32]  Peter W Dicke,et al.  Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention , 2004, Nature Neuroscience.

[33]  Wan Jiang,et al.  Cortex controls multisensory depression in superior colliculus. , 2003, Journal of neurophysiology.

[34]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[35]  F. Pavani,et al.  Task-dependent visual coding of sound position in visuospatial neglect patients , 2003, Neuroreport.

[36]  P. Haggard,et al.  Visual enhancement of touch in spatial body representation , 2003, Experimental Brain Research.

[37]  Daniel B. Rowe FMRI Case Study , 2002 .

[38]  B. Stein,et al.  Two Corticotectal Areas Facilitate Multisensory Orientation Behavior , 2002, Journal of Cognitive Neuroscience.

[39]  N. Bolognini,et al.  Enhancement of visual perception by crossmodal visuo-auditory interaction , 2002, Experimental Brain Research.

[40]  A Puce,et al.  Reemergence of activation with poststroke somatosensory recovery: A serial fMRI case study , 2002, Neurology.

[41]  A J Van Opstal,et al.  Auditory-visual interactions subserving goal-directed saccades in a complex scene. , 2002, Journal of neurophysiology.

[42]  Patrick Haggard,et al.  Vision Modulates Somatosensory Cortical Processing , 2002, Current Biology.

[43]  Mark T. Wallace,et al.  The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus , 2002, Experimental Brain Research.

[44]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[45]  P. Haggard,et al.  Noninformative vision improves the spatial resolution of touch in humans , 2001, Current Biology.

[46]  G. Recanzone,et al.  Auditory and Visual Spatial Localization Deficits Following Bilateral Parietal Lobe Lesions in a Patient with Balint's Syndrome , 2000, Journal of Cognitive Neuroscience.

[47]  R. Meuli,et al.  Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways , 2000, Neuropsychologia.

[48]  G. Aschersleben,et al.  Automatic visual bias of perceived auditory location , 1998 .

[49]  S. Tipper,et al.  Vision influences tactile perception without proprioceptive orienting , 1998, Neuroreport.

[50]  D. Robinson,et al.  Shared neural control of attentional shifts and eye movements , 1996, Nature.

[51]  L. Weiskrantz Blindsight revisited , 1996, Current Opinion in Neurobiology.

[52]  A. King,et al.  Multisensory integration. , 1993, Science.

[53]  M. Brouchon,et al.  Head turning versus manual pointing to auditory targets in normal subjects and in subjects with right parietal damage , 1992, Brain and Cognition.

[54]  A Cohen,et al.  Extrageniculate vision in hemianopic humans: saccade inhibition by signals in the blind field. , 1990, Science.

[55]  A J King,et al.  Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. , 1987, Journal of neurophysiology.

[56]  E. Bisiach,et al.  Disorders of perceived auditory lateralization after lesions of the right hemisphere. , 1984, Brain : a journal of neurology.

[57]  E. Knudsen Auditory and visual maps of space in the optic tectum of the owl , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Jeff Miller,et al.  Divided attention: Evidence for coactivation with redundant signals , 1982, Cognitive Psychology.

[59]  R. Marrocco,et al.  Monkey superior colliculus: properties of single cells and their afferent inputs. , 1977, Journal of neurophysiology.

[60]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .