Fast and robust bootstrap

In this paper we review recent developments on a bootstrap method for robust estimators which is computationally faster and more resistant to outliers than the classical bootstrap. This fast and robust bootstrap method is, under reasonable regularity conditions, asymptotically consistent. We describe the method in general and then consider its application to perform inference based on robust estimators for the linear regression and multivariate location-scatter models. In particular, we study confidence and prediction intervals and tests of hypotheses for linear regression models, inference for location-scatter parameters and principal components, and classification error estimation for discriminant analysis.

[1]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[2]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[3]  Hendrik P. Lopuhaä Multivariate τ-Estimators for Location and Scatter@@@Multivariate t-Estimators for Location and Scatter , 1991 .

[4]  V. Yohai,et al.  A Fast Algorithm for S-Regression Estimates , 2006 .

[5]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[6]  Matias Salibian-Barrera,et al.  The Asymptotics of MM-Estimators for Linear Regression with Fixed Designs , 2006 .

[7]  Marianthi Markatou,et al.  Robust M-type testing procedures for linear models , 1991 .

[8]  Douglas M. Hawkins,et al.  High-Breakdown Linear Discriminant Analysis , 1997 .

[9]  David E. Tyler,et al.  On the uniqueness of S-functionals and M-functionals under nonelliptical distributions , 2000 .

[10]  R. Welsch,et al.  Efficient Bounded-Influence Regression Estimation , 1982 .

[11]  Matias Salibian-Barrera,et al.  Estimating the p-values of robust tests for the linear model , 2005 .

[12]  W. Fung,et al.  High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis , 2000 .

[13]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[14]  R. Randles,et al.  Generalized Linear and Quadratic Discriminant Functions Using Robust Estimates , 1978 .

[15]  J. Habbema A stepwise discriminant analysis program using density estimetion , 1974 .

[16]  R. Zamar,et al.  Bootstrapping robust estimates of regression , 2002 .

[17]  M. Salibian-Barrera,et al.  Bootstrapping MM-estimators for linear regression with fixed designs☆ , 2006 .

[18]  Raymond J. Carroll,et al.  ON ALMOST SURE EXPANSIONS FOR M-ESTIMATES , 1978 .

[19]  David M. Rocke,et al.  Estimating the variances of robust estimators of location: influence curve, jackknife and bootstrap , 1981 .

[20]  Stefan Van Aelst,et al.  MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE , 2005 .

[21]  Geert Molenberghs,et al.  Transformation of non positive semidefinite correlation matrices , 1993 .

[22]  Léopold Simar,et al.  Computer Intensive Methods in Statistics , 1994 .

[23]  C. Croux,et al.  Robust linear discriminant analysis using S‐estimators , 2001 .

[24]  Christophe Croux,et al.  Robust standard errors for robust estimators , 2003 .

[25]  Stefan Van Aelst,et al.  Robust Multivariate Regression , 2004, Technometrics.

[26]  C. Croux,et al.  Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .

[27]  Arnold J. Stromberg,et al.  Robust covariance estimates based on resampling , 1997 .

[28]  R. Beran,et al.  Bootstrap Tests and Confidence Regions for Functions of a Covariance Matrix , 1985 .

[29]  P. L. Davies,et al.  The asymptotics of S-estimators in the linear regression model , 1990 .

[30]  Ruben H. Zamar,et al.  Globally robust inference for the location and simple linear regression models , 2004 .

[31]  S. J. Devlin,et al.  Robust Estimation of Dispersion Matrices and Principal Components , 1981 .

[32]  J. Daudin,et al.  Stability of principal component analysis studied by the bootstrap method , 1988 .

[33]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[34]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[35]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[36]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[37]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[38]  Mia Hubert,et al.  Fast and robust discriminant analysis , 2004, Comput. Stat. Data Anal..

[39]  J. Fox Bootstrapping Regression Models , 2002 .

[40]  Raymond J. Carroll,et al.  On Estimating Variances of Robust Estimators When the Errors are Asymmetric , 1979 .

[41]  M. Salibian-Barrera,et al.  Contributions to the theory of robust inference , 2000 .

[42]  Susan R. Wilson,et al.  Two guidelines for bootstrap hypothesis testing , 1991 .

[43]  Raymond J. Carroll,et al.  A Note on Asymmetry and Robustness in Linear Regression , 1988 .

[44]  Marek Omelka,et al.  Uniform asymptotics for S- and MM-regression estimators , 2010 .

[45]  Kesar Singh,et al.  Breakdown theory for bootstrap quantiles , 1998 .

[46]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[47]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[48]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[49]  H. Riedwyl,et al.  Multivariate Statistics: A Practical Approach , 1988 .

[50]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .

[51]  W. Pond,et al.  Modern Pork Production , 1983 .

[52]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[53]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[54]  D. Hawkins Multivariate Statistics: A Practical Approach , 1990 .

[55]  S. Van Aelst,et al.  Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap , 2006 .

[56]  H. P. Lopuhaä Multivariate τ‐estimators for location and scatter , 1991 .

[57]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[58]  H. P. Lopuhaä On the relation between S-estimators and M-estimators of multivariate location and covariance , 1989 .

[59]  V. Yohai,et al.  Optimal locally robust M-estimates of regression , 1997 .