Computing Invariants of Simplicial Manifolds

This is a survey of known algorithms in algebraic topology with a focus on finite simplicial complexes and, in particular, simplicial manifolds. Wherever possible an elementary approach is chosen. This way the text may also serve as a condensed but very basic introduction to the algebraic topology of simplicial manifolds. This text will appear as a chapter in the forthcoming book "Triangulated Manifolds with Few Vertices" by Frank H. Lutz.

[1]  H. Smith I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.

[2]  J. A. Todd,et al.  A practical method for enumerating cosets of a finite abstract group , 1936 .

[3]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[4]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[5]  D. Toledo,et al.  Stiefel-Whitney Homology Classes , 1972 .

[6]  Chih-Han Sah,et al.  Symmetric bilinear forms and quadratic forms , 1972 .

[7]  Edward C. Turner,et al.  A formula for Stiefel-Whitney homology classes , 1976 .

[8]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[9]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[10]  E. Rees CLASSICAL TOPOLOGY AND COMBINATORIAL GROUP THEORY (Graduate Texts in Mathematics, 72) , 1982 .

[11]  Michael H. Freedman,et al.  The topology of four-dimensional manifolds , 1982 .

[12]  Wolfgang Kühnel,et al.  The 9-vertex complex projective plane , 1983 .

[13]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[14]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[15]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[16]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[17]  B.R. Donald,et al.  On the complexity of computing the homology type of a triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[18]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[19]  Abigail Thompson,et al.  THIN POSITION AND THE RECOGNITION PROBLEM FOR S3 , 1994 .

[20]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[21]  Francis Sergeraert,et al.  The Computability Problem in Algebraic Topology , 1994 .

[22]  Ömer Egecioglu,et al.  A Computationally Intractable Problem on Simplicial Complexes , 1996, Comput. Geom..

[23]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[24]  Arne Storjohann Computing Hermite and Smith normal forms of triangular integer matrices , 1998 .

[25]  R. Forman Morse Theory for Cell Complexes , 1998 .

[26]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[27]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[28]  R. Forman Combinatorial Differential Topology and Geometry , 1999 .

[29]  András I. Stipsicz,et al.  4-manifolds and Kirby calculus , 1999 .

[30]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[31]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[32]  Frank H. Lutz,et al.  Simplicial Manifolds, Bistellar Flips and a 16-Vertex Triangulation of the Poincaré Homology 3-Sphere , 2000, Exp. Math..

[33]  Leonard H. Soicher,et al.  An Algorithmic Approach to Fundamental Groups and Covers of Combinatorial Cell Complexes , 2000, J. Symb. Comput..

[34]  Michael Joswig,et al.  Polymake: an approach to modular software design in computational geometry , 2001, SCG '01.

[35]  Thomas Lewiner,et al.  Constructing discrete Morse functions , 2002 .

[36]  Jean-Guillaume Dumas,et al.  Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms , 2003, Algebra, Geometry, and Software Systems.

[37]  Gert Vegter,et al.  Computational Topology , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[38]  H. O. Erdin Characteristic Classes , 2004 .

[39]  Michael Joswig,et al.  Complexes of discrete Morse functions , 2005, Discret. Math..