Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger–Horne–Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

[1]  Chuan Wang,et al.  An improved quantum repeater protocol using hyperentangled state purification , 2011 .

[2]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[3]  Rubens Viana Ramos,et al.  Two-layer quantum key distribution , 2015, Quantum Inf. Process..

[4]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[5]  Tian-Yu Ye Quantum secure direct dialogue over collective noise channels based on logical Bell states , 2015, Quantum Inf. Process..

[6]  Demetrios A. Kalamidas Single-photon quantum error rejection and correction with linear optics , 2005, quant-ph/0506114.

[7]  Bin Gu,et al.  High-Capacity Three-Party Quantum Secret Sharing with Single Photons in Both the Polarization and the Spatial-Mode Degrees of Freedom , 2013 .

[8]  Xiao-Ming Xiu,et al.  Quantum secure direct communication against the collective noise with polarization-entangled Bell states , 2015 .

[9]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[10]  Yan Xia,et al.  Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity , 2016, Quantum Inf. Process..

[11]  Demetrios A. Kalamidas,et al.  Linear optical scheme for error-free entanglement distribution and a quantum repeater , 2006, quant-ph/0601203.

[12]  Yan Xia,et al.  Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics , 2014, Quantum Information Processing.

[13]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[14]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[15]  Shohini Ghose,et al.  Hyperconcentration for multipartite entanglement via linear optics , 2014, 1601.03755.

[16]  Hiroki Takesue Entangling time-bin qubits with a switch , 2014 .

[17]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[18]  Bao-Cang Ren,et al.  Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates , 2015, Scientific Reports.

[19]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[20]  Shohini Ghose,et al.  Hyperentanglement concentration for time-bin and polarization hyperentangled photons , 2015, 1502.02891.

[21]  Chuan Wang,et al.  Hyperentanglement purification with linear optics assisted by W-states , 2015, Quantum Inf. Process..

[22]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[23]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[24]  Li Dong,et al.  Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel , 2014, Quantum Inf. Process..

[25]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[26]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[27]  Qian Liu,et al.  Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators , 2015, 1507.06108.

[28]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[29]  Ru Zhang,et al.  One-step hyperentanglement purification and hyperdistillation with linear optics. , 2015, Optics express.

[30]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[31]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[32]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[33]  Dan Liu,et al.  High-Capacity Quantum Secret Sharing with Hyperdense Coding Assisted by Hyperentangled Photon Pairs , 2013 .

[34]  Masato Koashi,et al.  Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace , 2008, 0806.2896.

[35]  Bin Gu,et al.  High-Capacity Three-Party Quantum Secret Sharing With Hyperentanglement , 2012 .

[36]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.

[37]  Gui-Lu Long,et al.  Deterministic error correction for nonlocal spatial-polarization hyperentanglement , 2016, Scientific Reports.

[38]  R Laflamme,et al.  Experimental quantum communication without a shared reference frame. , 2006, Physical review letters.

[39]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[40]  Jun Pan,et al.  Two-step measurement of the concurrence for hyperentangled state , 2014, Quantum Inf. Process..

[41]  Juan He,et al.  Efficient nonlocal entangled state distribution over the collective-noise channel , 2013, Quantum Inf. Process..

[42]  N Imoto,et al.  Faithful qubit distribution assisted by one additional qubit against collective noise. , 2005, Physical review letters.

[43]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[44]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[45]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[46]  Li Dong,et al.  Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels , 2015, Quantum Inf. Process..

[47]  Jie Song,et al.  Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity , 2012 .

[48]  Gui-Lu Long,et al.  Quantum secure direct communication , 2011 .

[49]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[50]  Masato Koashi,et al.  Efficient decoherence-free entanglement distribution over lossy quantum channels. , 2011, Physical review letters.

[51]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[52]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[53]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[54]  Mehmet A. Orgun,et al.  Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations , 2014, Quantum Inf. Process..

[55]  Xi-Han Li,et al.  Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. , 2015, Optics express.

[56]  Jie Song,et al.  Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity , 2011 .

[57]  Jin-Shi Xu,et al.  Quantum integrated circuit: classical characterization , 2015 .

[58]  R. Laflamme,et al.  Robust quantum communication using a polarization-entangled photon pair. , 2004, Physical review letters.

[59]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[60]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[61]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[62]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[63]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[64]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[65]  Ye Cao,et al.  Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement , 2013, Quantum Inf. Process..

[66]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[67]  Chuan Wang,et al.  Nonlocal hyperconcentration on entangled photons using photonic module system , 2016 .

[68]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[69]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.