Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties.
暂无分享,去创建一个
[1] Y. Oshima. On conservativeness and recurrence criteria for Markov processes , 1992 .
[2] M. Biroli,et al. Formes de Dirichlet et estimations structurelles dans les milieux discontinus , 1991 .
[3] Terry Lyons. Instability of the conservative property under quasi-isometries , 1991 .
[4] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[5] Terry Lyons. Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains , 1987 .
[6] R. Schoen,et al. Lp and mean value properties of subharmonic functions on Riemannian manifolds , 1984 .
[7] Peter Li. Uniqueness of $L^1$ solutions for the Laplace equation and the heat equation on Riemannian manifolds , 1984 .
[8] L. Karp. Subharmonic functions on real and complex manifolds , 1982 .
[9] R. Brooks. A relation between growth and the spectrum of the Laplacian , 1981 .
[10] Y. Jan. Mesures associees a une forme de Dirichlet , 1976 .
[11] S. Yau,et al. Differential equations on riemannian manifolds and their geometric applications , 1975 .
[12] S. Yau. Harmonic functions on complete riemannian manifolds , 1975 .