Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context

Abstract This paper examines two spatio-temporal approaches for short-term forecasting of global horizontal irradiance using gridded satellite-derived irradiances as experimental support. The first approach is a spatio-temporal vector autoregressive (STVAR) model combined with a statistical process for optimum selection of input variables. The second is an existing operational cloud motion vector (CMV) model. An evaluation of the predictive performance of these models is presented for a case study area in the Caribbean Islands. This region is characterized by a large diversity of microclimates and land/sea contrasts, creating a challenging solar forecasting context. Using scaled persistence as a reference, we benchmark the performance of the two spatio-temporal models over an extended 220 × 220 km domain, and for three specific, climatically distinct locations within this domain. We also assess the influence of intra-day solar resource variability on model performance. Finally, we present preliminary evidence that a blend of CMV and STVAR forecasts leads to improved accuracy under all conditions.

[1]  Marc G. Genton,et al.  Predictive spatio-temporal models for spatially sparse environmental data , 2005 .

[2]  Jorge Mateu,et al.  New classes of covariance and spectral density functions for spatio-temporal modelling , 2008 .

[3]  H. Chepfer,et al.  Scales of spatial and temporal variation of solar irradiance on Reunion tropical island , 2013 .

[4]  P. Ineichen,et al.  Producing satellite-derived irradiances in complex arid terrain , 2004 .

[5]  Raphaël Cécé,et al.  Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields , 2016 .

[6]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[7]  Philippe Lauret,et al.  Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks , 2015 .

[8]  Vladimiro Miranda,et al.  Spatial-Temporal Solar Power Forecasting for Smart Grids , 2015, IEEE Transactions on Industrial Informatics.

[9]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[10]  Richard Perez,et al.  Characterization of the intraday variability regime of solar irradiation of climatically distinct locations , 2016 .

[11]  Cyril Voyant,et al.  Statistical parameters as a means to a priori assess the accuracy of solar forecasting models , 2015 .

[12]  Lucien Wald,et al.  Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method , 2017 .

[13]  Carlos F.M. Coimbra,et al.  On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods , 2015 .

[14]  Thomas Reindl,et al.  Short-term solar irradiance forecasting using exponential smoothing state space model , 2013 .

[15]  Serge J. Belongie,et al.  Cloud motion and stability estimation for intra-hour solar forecasting , 2015 .

[16]  Jan Kleissl,et al.  Preprocessing WRF initial conditions for coastal stratocumulus forecasting , 2016 .

[17]  Thomas Reindl,et al.  Short term solar irradiance forecasting using a mixed wavelet neural network , 2016 .

[18]  Chris A. Glasbey,et al.  A spatiotemporal auto‐regressive moving average model for solar radiation , 2008 .

[19]  Henrik Madsen,et al.  Online short-term solar power forecasting , 2009 .

[20]  Heping Liu,et al.  Prediction of wind speed time series using modified Taylor Kriging method , 2010 .

[21]  J. Kleissl,et al.  Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed , 2011 .

[22]  Giansalvo Cirrincione,et al.  Wind speed spatial estimation for energy planning in Sicily: A neural kriging application , 2008 .

[23]  Dazhi Yang,et al.  Day-Ahead Solar Irradiance Forecasting in a Tropical Environment , 2015 .

[24]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[25]  T. Hoff,et al.  A New Version of the SUNY Solar Forecast Model: A Scalable Approach to Site-Specific Model Training , 2018 .

[26]  D. Boldo,et al.  Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model , 2014 .

[27]  Anil Kumar Sao,et al.  Solar radiation forecasting with multiple parameters neural networks , 2015 .

[28]  Richard Perez,et al.  Chapter 10 – SolarAnywhere Forecasting , 2013 .

[29]  Richard Perez,et al.  Detecting Calibration Drift at Ground Truth Stations A Demonstration of Satellite Irradiance Models' Accuracy , 2017 .

[30]  Dazhi Yang,et al.  Very short term irradiance forecasting using the lasso , 2015 .

[31]  Carlos F.M. Coimbra,et al.  History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining , 2018, Solar Energy.

[32]  Ted Soubdhan,et al.  Predictive spatio-temporal model for spatially sparse global solar radiation data , 2016 .

[33]  Richard Perez,et al.  Solar energy forecast validation for extended areas & economic impact of forecast accuracy , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[34]  T. Soubdhan,et al.  Classification of daily solar radiation distributions using a mixture of Dirichlet distributions , 2009 .

[35]  Dazhi Yang,et al.  Operational photovoltaics power forecasting using seasonal time series ensemble , 2018 .

[36]  T. Soubdhan,et al.  A benchmarking of machine learning techniques for solar radiation forecasting in an insular context , 2015 .

[37]  John Boland,et al.  Spatial-temporal forecasting of solar radiation , 2015 .

[38]  Lu Zhao,et al.  Forecasting of global horizontal irradiance by exponential smoothing, using decompositions , 2015 .

[39]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[40]  Jan Kleissl,et al.  Spatiotemporal interpolation and forecast of irradiance data using Kriging , 2017 .

[41]  A. Cronin,et al.  Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors , 2013 .

[42]  G. C. Tiao,et al.  A Course in Time Series Analysis , 2000 .

[43]  T. Soubdhan,et al.  Time Dependent Classification of Solar Radiation Sequences Using Best Information Criterion , 2014 .

[44]  Malika Charrad,et al.  NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set , 2014 .

[45]  L. D. Monache,et al.  An analog ensemble for short-term probabilistic solar power forecast , 2015 .

[46]  Richard Perez,et al.  A new operational solar resource forecast model service for PV fleet simulation , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[47]  Carlos F.M. Coimbra,et al.  Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs , 2013 .

[48]  T. Hoff,et al.  Validation of short and medium term operational solar radiation forecasts in the US , 2010 .

[49]  A. Hammer,et al.  Short-term forecasting of solar radiation: a statistical approach using satellite data , 1999 .

[50]  Miguel-Ángel Manso-Callejo,et al.  Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations , 2016 .

[51]  J. Dorville,et al.  Numerical Simulations of Island-Induced Circulations and Windward Katabatic Flow over the Guadeloupe Archipelago , 2014 .

[52]  Dazhi Yang,et al.  Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics , 2014 .

[53]  John Boland,et al.  Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model , 2013 .

[54]  Soteris A. Kalogirou,et al.  Machine learning methods for solar radiation forecasting: A review , 2017 .

[55]  Dazhi Yang,et al.  Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging , 2015 .

[56]  Thomas Reindl,et al.  Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage , 2014 .

[57]  Ponnuthurai Nagaratnam Suganthan,et al.  Ensemble methods for wind and solar power forecasting—A state-of-the-art review , 2015 .

[58]  Nan Chen,et al.  Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging , 2013 .

[59]  C. Coimbra,et al.  Day-ahead resource forecasting for concentrated solar power integration , 2016 .

[60]  R. Inman,et al.  Solar forecasting methods for renewable energy integration , 2013 .