Molecular Basis of Pediatric Brain Tumors

[1]  R. Packer,et al.  Pediatric Brain Tumors. , 2018, Neurologic clinics.

[2]  J. Chudek,et al.  Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors. , 2017, Advances in clinical and experimental medicine : official organ Wroclaw Medical University.

[3]  P. Northcott,et al.  Genomic Analysis of Childhood Brain Tumors: Methods for Genome-Wide Discovery and Precision Medicine Become Mainstream. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  S. Choi,et al.  Molecular Testing of Brain Tumor , 2017, Journal of pathology and translational medicine.

[5]  A. Eterovic,et al.  HIF1A is Overexpressed in Medulloblastoma and its Inhibition Reduces Proliferation and Increases EPAS1 and ATG16L1 Methylation. , 2017, Current cancer drug targets.

[6]  S. Pfister,et al.  Molecular mechanisms and therapeutic targets in pediatric brain tumors , 2017, Science Signaling.

[7]  C. Hawkins,et al.  An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update , 2016, Child's Nervous System.

[8]  Uri Tabori,et al.  Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma , 2016, Acta Neuropathologica Communications.

[9]  D. Segal,et al.  Pediatric Brain Tumors: An Update. , 2016, Current problems in pediatric and adolescent health care.

[10]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[11]  M. Israel,et al.  Pediatric Brain Tumors: Current Knowledge and Therapeutic Opportunities , 2016, Journal of pediatric hematology/oncology.

[12]  D. Haas-Kogan,et al.  Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. , 2016, Future oncology.

[13]  R. Lulla,et al.  Mutations in chromatin machinery and pediatric high-grade glioma , 2016, Science Advances.

[14]  T. Golub,et al.  Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. , 2015, Neuro-oncology.

[15]  H. Witt,et al.  Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  P. Burger,et al.  A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation , 2015, Acta Neuropathologica.

[17]  M. Varella‐Garcia,et al.  KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas , 2015, Journal of neuropathology and experimental neurology.

[18]  David T. W. Jones,et al.  Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. , 2015, The Lancet. Oncology.

[19]  M. Rosenblum,et al.  The Emerging Molecular Foundations of Pediatric Brain Tumors , 2015, Journal of child neurology.

[20]  M. Sanson,et al.  KIAA1549:BRAF fusion gene in pediatric brain tumors of various histogenesis , 2015, Pediatric blood & cancer.

[21]  K. Kurian,et al.  Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas , 2015, Front. Oncol..

[22]  R. Wechsler-Reya,et al.  For pediatric glioma, leave no histone unturned , 2014, Science.

[23]  S. Pfister,et al.  Molecular Insights into Pediatric Brain Tumors Have the Potential to Transform Therapy , 2014, Clinical Cancer Research.

[24]  L. Sullivan,et al.  A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas , 2014, Acta Neuropathologica.

[25]  D. Quint,et al.  Differences in vascular endothelial growth factor receptor expression and correlation with the degree of enhancement in medulloblastoma. , 2014, Journal of neurosurgery. Pediatrics.

[26]  J. Majewski,et al.  Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors , 2014, Acta Neuropathologica.

[27]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[28]  R. Beroukhim,et al.  Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition , 2014, Nature Medicine.

[29]  P. Varlet,et al.  Vemurafenib in pediatric patients with BRAFV600E mutated high‐grade gliomas , 2014, Pediatric blood & cancer.

[30]  David T. W. Jones,et al.  Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing , 2014, Nature.

[31]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[32]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[33]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[34]  R. Beroukhim,et al.  Pediatric low-grade gliomas: how modern biology reshapes the clinical field. , 2014, Biochimica et biophysica acta.

[35]  Toshihiro Kumabe,et al.  Cytogenetic prognostication within medulloblastoma subgroups. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[37]  W. D. den Dunnen,et al.  Anti-angiogenic therapy in pediatric brain tumors: an effective strategy? , 2014, Critical reviews in oncology/hematology.

[38]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[39]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[40]  R. Beroukhim,et al.  BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma , 2013, Clinical Cancer Research.

[41]  P. Knoepfler,et al.  Histone H3.3 mutations: a variant path to cancer. , 2013, Cancer cell.

[42]  Barbara S. Paugh,et al.  Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. , 2013, Cancer research.

[43]  F. Meric-Bernstam,et al.  Targeting the PI3-kinase/Akt/mTOR signaling pathway. , 2013, Surgical oncology clinics of North America.

[44]  J. Huse,et al.  Evaluation of Histone 3 Lysine 27 Trimethylation (H3K27me3) and Enhancer of Zest 2 (EZH2) in Pediatric Glial and Glioneuronal Tumors Shows Decreased H3K27me3 in H3F3A K27M Mutant Glioblastomas , 2013, Brain pathology.

[45]  N. Gerges,et al.  Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm , 2013, Genome Medicine.

[46]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[47]  J. Bartek,et al.  Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint , 2013, The Journal of cell biology.

[48]  D. Haas-Kogan,et al.  The Combination of Novel Targeted Molecular Agents and Radiation in the Treatment of Pediatric Gliomas , 2013, Front. Oncol..

[49]  A. Ashworth,et al.  Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. , 2013, Cancer discovery.

[50]  D. Aisner,et al.  Epithelioid GBMs Show a High Percentage of BRAF V600E Mutation , 2013, The American journal of surgical pathology.

[51]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[52]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[53]  R. Schneider,et al.  Targeting histone modifications--epigenetics in cancer. , 2013, Current opinion in cell biology.

[54]  C. Kramm,et al.  H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. , 2013, American journal of clinical pathology.

[55]  A. Fontebasso,et al.  Chromatin Remodeling Defects in Pediatric and Young Adult Glioblastoma: A Tale of a Variant Histone 3 Tail , 2013, Brain pathology.

[56]  Steven J. M. Jones,et al.  Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma , 2013, Acta Neuropathologica.

[57]  D. Krueger,et al.  Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma , 2013, Neurology.

[58]  Scott L. Pomeroy,et al.  Medulloblastomics: the end of the beginning , 2012, Nature Reviews Cancer.

[59]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[60]  A. Buccoliero,et al.  IDH1 Mutation in Pediatric Gliomas: Has it a Diagnostic and Prognostic Value? , 2012, Fetal and pediatric pathology.

[61]  Andrey Korshunov,et al.  Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations , 2012, Acta Neuropathologica.

[62]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[63]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[64]  Darren Hargrave,et al.  Paediatric and adult malignant glioma: close relatives or distant cousins? , 2012, Nature Reviews Clinical Oncology.

[65]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[66]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[67]  M. Kieran,et al.  Differences in molecular genetics between pediatric and adult malignant astrocytomas: age matters. , 2012, Future oncology.

[68]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[69]  C. Miller,et al.  Bax-deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation , 2012, Oncogene.

[70]  Rebecca A. Ihrie,et al.  Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy , 2012, Proceedings of the National Academy of Sciences.

[71]  P. Varlet,et al.  Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas , 2012, PloS one.

[72]  P. Soares,et al.  The mTOR Signalling Pathway in Human Cancer , 2012, International journal of molecular sciences.

[73]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[74]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[75]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[76]  Fausto J. Rodriguez,et al.  BRAF Alterations in Primary Glial and Glioneuronal Neoplasms of the Central Nervous System With Identification of 2 Novel KIAA1549: BRAF Fusion Variants , 2012, Journal of neuropathology and experimental neurology.

[77]  David T. W. Jones,et al.  MAPK pathway activation in pilocytic astrocytoma , 2011, Cellular and Molecular Life Sciences.

[78]  Barbara S. Paugh,et al.  Targeted Therapy for BRAFV600E Malignant Astrocytoma , 2011, Clinical Cancer Research.

[79]  Barbara S. Paugh,et al.  Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[80]  R. McLendon,et al.  Altered Telomeres in Tumors with ATRX and DAXX Mutations , 2011, Science.

[81]  S. Pfister,et al.  Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas , 2011, Clinical Cancer Research.

[82]  G. Nikkhah,et al.  BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model , 2011, Clinical Cancer Research.

[83]  David T. W. Jones,et al.  Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma , 2011, Acta Neuropathologica.

[84]  J. Sarkaria,et al.  PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma , 2011, Acta Neuropathologica.

[85]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[86]  D. Frappaz,et al.  Brain tumors: from childhood through adolescence into adulthood. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[87]  S. Shurtleff,et al.  MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas , 2010, Acta Neuropathologica.

[88]  A. Ashworth,et al.  A Distinct Spectrum of Copy Number Aberrations in Pediatric High-Grade Gliomas , 2010, Clinical Cancer Research.

[89]  Richard G Grundy,et al.  Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[90]  T. Pietsch,et al.  Natural history and management of low-grade glioma in NF-1 children , 2010, Journal of Neuro-Oncology.

[91]  S. Rafii,et al.  Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions , 2010, Cell.

[92]  A. Montpetit,et al.  Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. , 2010, Neuro-oncology.

[93]  Hanlee P. Ji,et al.  Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. , 2010, Cancer research.

[94]  Andreas von Deimling,et al.  Hereditary tumor syndromes and gliomas. , 2009, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[95]  A. Montpetit,et al.  Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours , 2009, British Journal of Cancer.

[96]  Jing Ma,et al.  Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas , 2009, The Journal of pathology.

[97]  D. Pearson,et al.  Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma , 2009, Oncogene.

[98]  Emmanuel Barillot,et al.  Beta‐catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics , 2009, The Journal of pathology.

[99]  D. Hargrave Paediatric high and low grade glioma: the impact of tumour biology on current and future therapy , 2009, British Journal of Neurosurgery.

[100]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[101]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[102]  M. Hengstschläger,et al.  The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. , 2008, Mutation research.

[103]  N. Boddaert,et al.  Stereotactic biopsy of diffuse pontine lesions in children. , 2007, Journal of neurosurgery.

[104]  L. Parada,et al.  Tumor microenvironment and neurofibromatosis type I: connecting the GAPs , 2007, Oncogene.

[105]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[106]  David T. W. Jones,et al.  Genomic Analysis of Pilocytic Astrocytomas at 0.97 Mb Resolution Shows an Increasing Tendency Toward Chromosomal Copy Number Change With Age , 2006, Journal of neuropathology and experimental neurology.

[107]  G. Reifenberger,et al.  Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas , 2004, Acta Neuropathologica.

[108]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Alcino J. Silva,et al.  Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1 , 2002, Nature.

[110]  S Povey,et al.  Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. , 1997, Science.

[111]  V. Staedtke,et al.  Actionable Molecular Biomarkers in Primary Brain Tumors. , 2016, Trends in cancer.

[112]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[113]  R. Arceci An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2009 .

[114]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[115]  J. Garber,et al.  Li-Fraumeni Syndrome , 2001 .

[116]  Kelvin H. Lee,et al.  Genomic analysis. , 2000, Current opinion in biotechnology.