First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection

We obtained the first maps of Jupiter at 1–3 mm wavelength with the Atacama Large Millimeter/Submillimeter Array (ALMA) on 2017 January 3–5, just days after an energetic eruption at 16.°5S jovigraphic latitude had been reported by the amateur community, and about two to three months after the detection of similarly energetic eruptions in the northern hemisphere, at 22.°2–23.°0N. Our observations, probing below the ammonia cloud deck, show that the erupting plumes in the South Equatorial Belt bring up ammonia gas from the deep atmosphere. While models of plume eruptions that are triggered at the water condensation level explain data taken at uv–visible and mid-infrared wavelengths, our ALMA observations provide a crucial, hitherto missing, link in the moist convection theory by showing that ammonia gas from the deep atmosphere is indeed brought up in these plumes. Contemporaneous Hubble Space Telescope data show that the plumes reach altitudes as high as the tropopause. We suggest that the plumes at 22.°2–23.°0N also rise up well above the ammonia cloud deck and that descending air may dry the neighboring belts even more than in quiescent times, which would explain our observations in the north.

[1]  S. Fleming,et al.  High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019 , 2019, The Astrophysical Journal Supplement Series.

[2]  I. de Pater,et al.  A re-analysis of the Jovian radio emission as seen by Cassini-RADAR and evidence for time variability , 2019, Icarus.

[3]  D. DeBoer,et al.  Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz , 2019, Icarus.

[4]  E. Magnier,et al.  Analysis of Neptune’s 2017 bright equatorial storm , 2018, Icarus.

[5]  Jonathan Tennyson,et al.  Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update , 2018, Icarus.

[6]  P. Marcus,et al.  An equatorial thermal wind equation: Applications to Jupiter , 2017, Icarus.

[7]  G. Orton,et al.  The Gas Composition and Deep Cloud Structure of Jupiter's Great Red Spot , 2018, The Astronomical Journal.

[8]  G. Orton,et al.  Jupiter’s Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM , 2018, The Astronomical journal.

[9]  Shannon T. Brown,et al.  Prevalent lightning sferics at 600 megahertz near Jupiter’s poles , 2018, Nature.

[10]  D. DeBoer,et al.  A Wideband Self-consistent Disk-averaged Spectrum of Jupiter Near 30 GHz and Its Implications for NH3 Saturation in the Upper Troposphere , 2018, 1801.07812.

[11]  I. Pater,et al.  Discovery of a Bright Equatorial Storm on Neptune , 2017 .

[12]  G. Orton,et al.  Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission , 2017 .

[13]  G. Orton,et al.  Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival , 2017, 1708.05179.

[14]  Shannon T. Brown,et al.  The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data , 2017 .

[15]  L. Fletcher Cycles of activity in the Jovian atmosphere , 2017, 1708.05180.

[16]  J. F. Rojas,et al.  A planetary‐scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground‐based observations , 2017 .

[17]  S. Calcutt,et al.  Analysis of gaseous ammonia (NH 3 ) absorption in the visible spectrum of Jupiter , 2017 .

[18]  H. Hammel,et al.  Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions , 2016, 1706.05049.

[19]  T. Encrenaz,et al.  Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES , 2016, 1606.05498.

[20]  D. DeBoer,et al.  Peering through Jupiter’s clouds with radio spectral imaging , 2016, Science.

[21]  Jonathan L. Mitchell,et al.  Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT , 2015, 1509.08835.

[22]  H. Hammel,et al.  Clouds and aerosols on Uranus: Radiative transfer modeling of spatially-resolved near-infrared Keck spectra , 2015 .

[23]  S. Atreya,et al.  Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models , 2015 .

[24]  G. Orton,et al.  Neptune’s global circulation deduced from multi-wavelength observations , 2014 .

[25]  Yoshi-Yuki Hayashi,et al.  Numerical simulations of Jupiter's moist convection layer: Structure and dynamics in statistically steady states , 2014 .

[26]  G. Orton,et al.  Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt , 2013, 1701.00965.

[27]  H. Hammel,et al.  Keck adaptive optics images of Jupiter’s north polar cap and Northern Red Oval , 2011 .

[28]  Leigh N. Fletcher,et al.  Jovian temperature and cloud variability during the 2009-2010 fade of the South Equatorial Belt , 2011, 1701.00957.

[29]  Michael H. Wong,et al.  Changes in Jupiter’s zonal velocity between 1979 and 2008 , 2011 .

[30]  Michael H. Wong,et al.  Persistent rings in and around Jupiter's anticyclones - Observations and theory , 2010 .

[31]  I. Pater,et al.  Temporal variation of the tropospheric cloud and haze in the jovian equatorial zone , 2010 .

[32]  M. Wong Fringing in the WFC3/UVIS detector , 2010 .

[33]  M. Wong Fringing in the WFC 3 / UVIS detector , 2010 .

[34]  G. Orton,et al.  Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging , 2009 .

[35]  Ashwin R. Vasavada,et al.  Jovian atmospheric dynamics: an update after Galileo and Cassini , 2005 .

[36]  I. Pater,et al.  Dynamical implications of Jupiter's tropospheric ammonia abundance , 2005 .

[37]  M. Marley,et al.  Retrieval of water in Jupiter's deep atmosphere using microwave spectra of its brightness temperature , 2005 .

[38]  W. Welch,et al.  Accurate jovian radio flux density measurements show ammonia to be subsaturated in the upper troposphere , 2005 .

[39]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[40]  I. Pater,et al.  Longitude-resolved imaging of Jupiter at λ=2 cm , 2004, astro-ph/0612769.

[41]  R. Siebenmorgen,et al.  Successful Commissioning of VISIR: The Mid-Infrared VLT Instrument , 2004 .

[42]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[43]  R. Hueso,et al.  A Three-Dimensional Model of Moist Convection for the Giant Planets: The Jupiter Case , 2001 .

[44]  I. Pater,et al.  Reconciling Galileo Probe Data and Ground-Based Radio Observations of Ammonia on Jupiter , 2001 .

[45]  Shigeyuki Sako,et al.  COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope , 2000, Astronomical Telescopes and Instrumentation.

[46]  Klaus W. Hodapp,et al.  The Gemini Near‐Infrared Imager (NIRI) , 2000, Astronomical Telescopes and Instrumentation.

[47]  David H. Atkinson,et al.  The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter , 1998 .

[48]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[49]  Peter A. R. Ade,et al.  Cassini infrared Fourier spectroscopic investigation , 1996, Optics & Photonics.

[50]  M. Wright,et al.  A retrospective view of Miriad , 2006, astro-ph/0612759.

[51]  D. Mitchell,et al.  Radio observations of the planets : the importance of laboratory measurements , 1993 .

[52]  G. F. Lindal,et al.  The atmosphere of Neptune : an analysis of radio occultation data acquired with Voyager 2 , 1992 .

[53]  R. Dmowska,et al.  International Geophysics Series , 1992 .

[54]  Stephen S. Leroy,et al.  Temperature and circulation in the stratosphere of the outer planets , 1990 .

[55]  I. Pater Jupiter's zone-belt structure at radio wavelengths: II. Comparison of observations with model atmosphere calculations , 1986 .