Fault detection of uncertain nonlinear process using interval-valued data-driven approach

Abstract This paper introduces a new structure kernel principal component analysis (KPCA) that can successfully model symbolic interval-valued data for fault detection. In the proposed structure, interval KPCA (IKPCA) method is proposed to deal with interval-valued data. Two IKPCA models are proposed. The first model is based on the centers and ranges of intervals IKPCA CR and the second model is based the upper and lower bounds of intervals IKPCA UL . Residuals are generated and fault detection indices are computed. The aim of using IKPCA is to ensure robustness to false alarm without affecting the fault detection performance. The proposed fault detection approach is carried out using simulation example and Tennessee Eastman Process (TEP). The obtained results demonstrate the effectiveness of the proposed technique.

[1]  Ravindra D. Gudi,et al.  Evaluation of nonlinear scaling and transformation for nonlinear process fault detection , 2012 .

[2]  Richard D. Braatz,et al.  Tennessee Eastman Process , 2000 .

[3]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[4]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[5]  Junhong Li,et al.  Improved kernel principal component analysis for fault detection , 2008, Expert Syst. Appl..

[6]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[7]  Frédéric Kratz,et al.  Sensor fault detection based on principal component analysis for interval-valued data , 2018 .

[8]  Hazem Nounou,et al.  Enhanced data validation strategy of air quality monitoring network , 2018, Environmental research.

[9]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[10]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[11]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[12]  Jin Hyun Park,et al.  Fault detection and identification of nonlinear processes based on kernel PCA , 2005 .

[13]  L. Billard,et al.  Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data , 2012 .

[14]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[15]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[16]  Faisal Khan,et al.  Improved latent variable models for nonlinear and dynamic process monitoring , 2017 .

[17]  F. Palumbo,et al.  A PCA for interval-valued data based on midpoints and radii , 2003 .

[18]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[19]  Janos Gertler,et al.  Principal Component Analysis and Parity Relations - A Strong Duality , 1997 .

[20]  Shufeng Tan,et al.  Reducing data dimensionality through optimizing neural network inputs , 1995 .

[21]  E. Diday,et al.  Extension de l'analyse en composantes principales à des données de type intervalle , 1997 .

[22]  Abdelmalek Kouadri,et al.  A combined monitoring scheme with fuzzy logic filter for plant-wide Tennessee Eastman Process fault detection , 2018, Chemical Engineering Science.

[23]  S. Qin,et al.  Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .

[24]  Richard D. Braatz,et al.  Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes , 2000 .

[25]  Masayuki Tamura,et al.  A study on the number of principal components and sensitivity of fault detection using PCA , 2007, Comput. Chem. Eng..

[26]  Carlos F. Alcala,et al.  Reconstruction-based contribution for process monitoring with kernel principal component analysis , 2010, Proceedings of the 2010 American Control Conference.

[27]  P. Giordani,et al.  A least squares approach to principal component analysis for interval valued data , 2004 .

[28]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[29]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[30]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[31]  Donghua Zhou,et al.  Generalized Reconstruction-Based Contributions for Output-Relevant Fault Diagnosis With Application to the Tennessee Eastman Process , 2011, IEEE Transactions on Control Systems Technology.

[32]  Hazem Nounou,et al.  Midpoint-radii principal component analysis -based EWMA and application to air quality monitoring network , 2018 .

[33]  Manabu Kano,et al.  Statistical process monitoring based on dissimilarity of process data , 2002 .

[34]  Zhiqiang Ge,et al.  Improved kernel PCA-based monitoring approach for nonlinear processes , 2009 .

[35]  Renata M. C. R. de Souza,et al.  Clustering interval data through kernel-induced feature space , 2012, Journal of Intelligent Information Systems.

[36]  Lynne Billard,et al.  Dependencies and Variation Components of Symbolic Interval-Valued Data , 2007 .

[37]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[38]  Gilles Mourot,et al.  An improved PCA scheme for sensor FDI: Application to an air quality monitoring network , 2006 .

[39]  Frédéric Kratz,et al.  On the application of interval PCA to process monitoring: A robust strategy for sensor FDI with new efficient control statistics , 2018 .

[40]  Zhihuan Song,et al.  Fault detection behavior and performance analysis of principal component analysis based process monitoring methods , 2002 .

[41]  Bart De Ketelaere,et al.  A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional, time-dependent processes , 2016 .

[42]  Hazem Nounou,et al.  Kernel PCA-based GLRT for nonlinear fault detection of chemical processes , 2016 .

[43]  Renata M. C. R. de Souza,et al.  A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..

[44]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[45]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .