Preparation of La0.75Sr0.25Cr0.5Mn0.5O3−δ fine powders by carbonate coprecipitation for solid oxide fuel cells

[1]  Sun Jung Kim,et al.  Preparation of LSGM powders for low temperature sintering , 2009 .

[2]  J. Vohs,et al.  Investigation of the Structural and Catalytic Requirements for High-Performance SOFC Anodes Formed by Infiltration of LSCM , 2009 .

[3]  S. McIntosh,et al.  The Influence of Current Density on the Electrocatalytic Activity of Oxide-Based Direct Hydrocarbon SOFC Anodes , 2008 .

[4]  T. He,et al.  Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells , 2008 .

[5]  Z. Wen,et al.  Use of La0.75Sr0.25Cr0.5Mn0.5O3 materials in composite anodes for direct ethanol solid oxide fuel cells , 2008 .

[6]  T. He,et al.  Pd-Promoted La0.75Sr0.25Cr0.5Mn0.5O3 / YSZ Composite Anodes for Direct Utilization of Methane in SOFCs , 2008 .

[7]  D. Ding,et al.  Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impregnation Method : A Modeling Comparison , 2008 .

[8]  J. Vohs,et al.  Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane , 2008 .

[9]  Nigel P. Brandon,et al.  Sulfur Tolerance and Hydrocarbon Stability of La0.75Sr0.25Cr0.5Mn0.5O3 ∕ Gd0.2Ce0.8O1.9 Composite Anode under Anodic Polarization , 2007 .

[10]  J. Zhu,et al.  Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 − δ anodes for direct utilization of methane in SOFC , 2007 .

[11]  John T. S. Irvine,et al.  Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3−δ and La4Sr8Ti11Mn0.5Ga0.5O37.5−δ, using Cu–YSZ-based cermets , 2007 .

[12]  S. Jiang,et al.  Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells , 2007 .

[13]  S. Jiang,et al.  Synthesis and performance of (La0.75 Sr0.25) 1-x (Cr0.5 Mn0.5) O3 cathode powders of solid oxide fuel cells by gel-casting technique , 2007 .

[14]  Wang Shaoliang,et al.  Performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel , 2007 .

[15]  Nigel P. Brandon,et al.  High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane , 2007 .

[16]  R. Song,et al.  Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC , 2007 .

[17]  S. Chan,et al.  High-performance (La,Sr ) (Cr,Mn )O3 / (Gd,Ce )O2- δ composite anode for direct oxidation of methane , 2007 .

[18]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[19]  Juan Carlos Ruiz-Morales,et al.  Fuel cell studies of perovskite-type materials for IT-SOFC , 2006 .

[20]  J. Goodenough,et al.  La0.75Sr0.25Cr0.5Mn0.5O3−δ + Cu composite anode running on H2 and CH4 fuels , 2006 .

[21]  J. Kwok,et al.  GDC-Impregnated ( La0.75Sr0.25 ) ( Cr0.5Mn0.5 ) O3 Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells , 2006 .

[22]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[23]  S. Chan,et al.  (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells , 2006 .

[24]  J. Irvine,et al.  Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-δat lanthanum gallate electrolytes , 2006 .

[25]  John T. S. Irvine,et al.  An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites , 2005 .

[26]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[27]  J. Irvine,et al.  Synthesis and Characterization of ( La0.75Sr0.25 ) Cr0.5Mn0.5 O 3 − δ , a Redox-Stable, Efficient Perovskite Anode for SOFCs , 2004 .

[28]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[29]  T. Mori,et al.  Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering , 2001 .

[30]  Yoshiyuki Yajima,et al.  Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant , 2001 .

[31]  Yoshiyuki Yajima,et al.  Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant , 2000 .

[32]  J. H. Lee,et al.  Well-sinterable Y_3Al_5O_12 Powder from Carbonate Precursor , 2000 .

[33]  T. Ishihara,et al.  High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 , 1998 .

[34]  John B. Goodenough,et al.  Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr‐ and Mg‐Doped LaGaO3 , 1997 .

[35]  Xin-Jian Zhu,et al.  Characteristics and performance of lanthanum gallate electrolyte-supported SOFC under ethanol steam and hydrogen , 2009 .

[36]  John T. S. Irvine,et al.  LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells , 2007 .