Binary Codes, Graphs, and Trellises

In this chapter we focus on the structure and description of binary convolutional codes and their encoders. Both algebraic and graph-based methods are used to develop a generic description of the codes. It is shown that both recursive and feedforward encoders can be used to generate the same convolutional code. The distinctions between various encoders for a given code are discussed, and an emphasis is placed on the properties of recursive, systematic convolutional encoders. It is shown that such descriptive and analytic techniques can also be applied to block codes through the BCJR trellis construction technique.

[1]  Alexander Vardy,et al.  Optimal sectionalization of a trellis , 1996, IEEE Trans. Inf. Theory.

[2]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[3]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[4]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[5]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[6]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[7]  Comments on "Optimum Nonlinear Scalar Transmitters and Receivers" , 1969 .

[8]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[9]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[10]  Rolf Johannesson,et al.  Minimal and canonical rational generator matrices for convolutional codes , 1996, IEEE Trans. Inf. Theory.

[11]  Frank R. Kschischang The trellis structure of maximal fixed-cost codes , 1996, IEEE Trans. Inf. Theory.

[12]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[13]  Robert J. McEliece,et al.  The trellis complexity of convolutional codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[14]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[15]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[16]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[17]  G. D. Forney,et al.  The V.34 high speed modem standard , 1996 .

[18]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[19]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[20]  Alexander Vardy,et al.  Proof of a conjecture of McEliece regarding the expansion index of the minimal trellis , 1996, IEEE Trans. Inf. Theory.

[21]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[22]  James L. Massey,et al.  Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.