A Matrix Pseudoinversion Lemma and Its Application to Block-Based Adaptive Blind Deconvolution for MIMO Systems

The matrix inversion lemma gives an explicit formula of the inverse of a positive definite matrix <i>A</i> added to a block of dyads (represented as <i>BB</i><sup>H</sup>) as follows: (<i>A</i>+<i>BB</i><sup>H</sup>)<sup>-1</sup>= <i>A</i><sup>-1</sup>- <i>A</i><sup>-1</sup><i>B</i>(<i>I</i> + <i>B</i><sup>H</sup><i>A</i><sup>-1</sup><i>B</i>)<sup>-1</sup><i>B</i><sup>H</sup><i>A</i><sup>-1</sup>. It is well known in the literature that this formula is very useful to develop a block-based recursive least squares algorithm for the block-based recursive identification of linear systems or the design of adaptive filters. We extend this result to the case when the matrix <i>A</i> is singular and present a matrix pseudoinversion lemma along with some illustrative examples. Based on this result, we propose a block-based adaptive multichannel superexponential algorithm. We present simulation results for the performance of the block-based algorithm in order to show the usefulness of the matrix pseudoinversion lemma.

[1]  Yoram Bresler,et al.  FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders , 1998, IEEE Trans. Signal Process..

[2]  J. Mendel Lessons in Estimation Theory for Signal Processing, Communications, and Control , 1995 .

[3]  Ah Chung Tsoi,et al.  A Balanced Approach to Multichannel Blind Deconvolution , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[5]  Massimiliano Martone An adaptive algorithm for antenna array low-rank processing in cellular TDMA base stations , 1998, IEEE Trans. Commun..

[6]  Zheng Bao,et al.  An extended recursive least-squares algorithm , 2001, Signal Process..

[7]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[8]  Mitsuru Kawamoto,et al.  A Matrix Pseudo-Inversion Lemma and Its Application to Block-Based Adaptive Blind Deconvolution for MIMO Systems , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[9]  Ehud Weinstein,et al.  Super-exponential methods for blind deconvolution , 1993, IEEE Trans. Inf. Theory.

[10]  Yi-Sheng Chen,et al.  Blind Channel Identification for MIMO Single Carrier Zero Padding Block Transmission Systems , 2008, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[11]  Y. Inouye,et al.  A system-theoretic foundation for blind equalization of an FIR MIMO channel system , 2002 .

[12]  Matsue Shimane,et al.  A System-Theoretic Foundation for Blind Equalization of an FIR MIMO Channel System , 2000 .

[13]  Kathleen J. Vigness Raposa,et al.  The Theory of the Matrix , 2005 .

[14]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[15]  Tetsuya Okamoto,et al.  Adaptive super-exponential algorithms for blind deconvolution of MIMO systems , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[16]  Huahui Wang,et al.  Blind Channel Estimation for MIMO Systems with Structured Transmit Delay Scheme , 2005, ASILOMAR 2005.

[17]  Yujiro Inouye,et al.  Super-exponential algorithms for multichannel blind deconvolution , 2000, IEEE Trans. Signal Process..

[18]  Jung-Lang Yu,et al.  Space–Time-Coded MIMO ZP-OFDM Systems: Semiblind Channel Estimation and Equalization , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Thomas Kailath,et al.  Linear Systems , 1980 .

[21]  Mitsuru Kawamoto,et al.  A Matrix Pseudo-Inversion Lemma for Positive Semidefinite Hermitian Matrices and Its Application to Adaptive Blind Deconvolution of MIMO Systems , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  R. Penrose A Generalized inverse for matrices , 1955 .

[23]  Hidemitsu Ogawa,et al.  An operator pseudo-inversion lemma , 1988 .

[24]  Mitsuru Kawamoto,et al.  A block-based adaptive super-exponential deflation algorithm for blind deconvolution of MIMO systems using the matrix pseudo-inversion lemma , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[25]  Mitsuru Kawamoto,et al.  An adaptive super-exponential deflation algorithm for blind deconvolution of MIMO systems using the matrix pseudo-inversion lemma , 2005, 2005 IEEE International Symposium on Circuits and Systems.