Must the Spectrum of a Random Schrödinger Operator Contain an Interval?

We consider Schrödinger operators in `(Z) whose potentials are given by independent (not necessarily identically distributed) random variables. We ask whether it is true that almost surely its spectrum contains an interval. We provide an affirmative answer in the case of random potentials given by a sum of a perturbatively small quasi-periodic potential with analytic sampling function and Diophantine frequency vector and a term of Anderson type, given by independent identically distributed random variables. The proof proceeds by extending a result about the presence of ground states for atypical realizations of the classical Anderson model, which we prove here as well and which appears to be new.

[1]  Support theorems for random Schrödinger operators , 1985 .

[2]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[3]  D. Damanik,et al.  Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials , 2006 .

[4]  D. Pearson,et al.  On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .

[5]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[6]  Joaquim Puig Cantor Spectrum for the Almost Mathieu Operator , 2004 .

[7]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[8]  Kristian Bjerklöv Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum , 2007 .

[9]  D. Damanik,et al.  A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem , 2004, math/0403190.

[10]  A. Klein Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators , 2012, Communications in Mathematical Physics.

[11]  D. Damanik Schrödinger operators with dynamically defined potentials , 2014, Ergodic Theory and Dynamical Systems.

[12]  W. Kyner Invariant Manifolds , 1961 .

[13]  Ao Cai,et al.  Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles , 2017, Mathematische Zeitschrift.

[14]  Random Schrödinger operators with a background potential , 2017, 1712.08095.

[15]  G. Stolz,et al.  Anderson Localization for Random Schrödinger Operators with Long Range Interactions , 1998 .

[16]  Jamerson Bezerra,et al.  Random product of quasi-periodic cocycles , 2019, Proceedings of the American Mathematical Society.

[17]  Anton Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .

[18]  A. Klein,et al.  A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.

[19]  G. Stolz,et al.  Localization for random perturbations of periodic Schrödinger operators , 1998 .

[20]  Tim Purdy Power-law subordinacy and singular spectra I. Half-line operators , 1999 .

[21]  J. Combes,et al.  Localization for Some Continuous, Random Hamiltonians in d-Dimensions , 1994 .

[22]  B. Simon Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .

[23]  Kasso A. Okoudjou,et al.  Spectral decimation of a self-similar version of almost Mathieu-type operators , 2021, Journal of Mathematical Physics.

[24]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[25]  J. Moser An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum , 1981 .

[26]  J. Bellissard K-theory of C*—Algebras in solid state physics , 1986 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  D. Damanik,et al.  Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts , 2007, 0709.2667.

[29]  R. Han Shnol’s theorem and the spectrum of long range operators , 2017, Proceedings of the American Mathematical Society.

[30]  Kristian Bjerklöv The Dynamics of a Class of Quasi-Periodic Schrödinger Cocycles , 2013, 1311.5394.

[31]  F. Klopp INTERNAL LIFSHITS TAILS FOR RANDOM PERTURBATIONS OF PERIODIC SCHRODINGER OPERATORS , 1999 .

[32]  J. Bochi,et al.  Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.

[33]  Pedro Duarte,et al.  Mixed Random-Quasiperiodic Cocycles , 2021, 2109.09544.

[34]  L. Zanelli,et al.  Mathematical methods of Quantum Mechanics , 2017 .

[35]  Localization for Random Perturbations of Periodic Schrödinger Operators with Regular Floquet Eigenvalues , 2002, math-ph/0510063.

[36]  Barry Simon,et al.  Spectral analysis of rank one perturbations and applications , 1995 .