Must the Spectrum of a Random Schrödinger Operator Contain an Interval?
暂无分享,去创建一个
[1] Support theorems for random Schrödinger operators , 1985 .
[2] L. H. Eliasson,et al. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .
[3] D. Damanik,et al. Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials , 2006 .
[4] D. Pearson,et al. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .
[5] András Sütő,et al. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .
[6] Joaquim Puig. Cantor Spectrum for the Almost Mathieu Operator , 2004 .
[7] Hervé Kunz,et al. Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .
[8] Kristian Bjerklöv. Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum , 2007 .
[9] D. Damanik,et al. A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem , 2004, math/0403190.
[10] A. Klein. Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators , 2012, Communications in Mathematical Physics.
[11] D. Damanik. Schrödinger operators with dynamically defined potentials , 2014, Ergodic Theory and Dynamical Systems.
[12] W. Kyner. Invariant Manifolds , 1961 .
[13] Ao Cai,et al. Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles , 2017, Mathematische Zeitschrift.
[14] Random Schrödinger operators with a background potential , 2017, 1712.08095.
[15] G. Stolz,et al. Anderson Localization for Random Schrödinger Operators with Long Range Interactions , 1998 .
[16] Jamerson Bezerra,et al. Random product of quasi-periodic cocycles , 2019, Proceedings of the American Mathematical Society.
[17] Anton Bovier,et al. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .
[18] A. Klein,et al. A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.
[19] G. Stolz,et al. Localization for random perturbations of periodic Schrödinger operators , 1998 .
[20] Tim Purdy. Power-law subordinacy and singular spectra I. Half-line operators , 1999 .
[21] J. Combes,et al. Localization for Some Continuous, Random Hamiltonians in d-Dimensions , 1994 .
[22] B. Simon. Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .
[23] Kasso A. Okoudjou,et al. Spectral decimation of a self-similar version of almost Mathieu-type operators , 2021, Journal of Mathematical Physics.
[24] G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .
[25] J. Moser. An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum , 1981 .
[26] J. Bellissard. K-theory of C*—Algebras in solid state physics , 1986 .
[27] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[28] D. Damanik,et al. Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts , 2007, 0709.2667.
[29] R. Han. Shnol’s theorem and the spectrum of long range operators , 2017, Proceedings of the American Mathematical Society.
[30] Kristian Bjerklöv. The Dynamics of a Class of Quasi-Periodic Schrödinger Cocycles , 2013, 1311.5394.
[31] F. Klopp. INTERNAL LIFSHITS TAILS FOR RANDOM PERTURBATIONS OF PERIODIC SCHRODINGER OPERATORS , 1999 .
[32] J. Bochi,et al. Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.
[33] Pedro Duarte,et al. Mixed Random-Quasiperiodic Cocycles , 2021, 2109.09544.
[34] L. Zanelli,et al. Mathematical methods of Quantum Mechanics , 2017 .
[35] Localization for Random Perturbations of Periodic Schrödinger Operators with Regular Floquet Eigenvalues , 2002, math-ph/0510063.
[36] Barry Simon,et al. Spectral analysis of rank one perturbations and applications , 1995 .