Influence of film thickness variation on the photo electrochemical cell performances of Ag3SbS3 thin films

[1]  J. Xu,et al.  Dependence of morphology, substrate and thickness of iron phthalocyanine thin films on the photocatalytic degradation of rhodamine B dye , 2018, Chemical Papers.

[2]  J. Jia,et al.  Facile synthesis of stoichiometric AgSbS2 silk-like nanoflowers for solar energy conversion , 2016 .

[3]  A. Uribe-Salas,et al.  Pyrargyrite (Ag3SbS3): Silver and antimony dissolution by ozone oxidation in acid media , 2016 .

[4]  Jen-Bin Shi,et al.  Ag3SbS3 thin films formed by annealing hydrothermally synthesized Ag3SbS3 nanoparticles , 2016 .

[5]  K. V. Khot,et al.  Enhanced photoelectrochemical performance of novel p-type MoBiCuSe4 thin films deposited by a simple surfactant-mediated solution route , 2016 .

[6]  J. Jia,et al.  Synthesis of stoichiometric AgSbS2 nanospheres via one-step solvothermal chemical process , 2015 .

[7]  Zhifeng Liu,et al.  AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting , 2015 .

[8]  Wen-Hau Zhang,et al.  Monodisperse AgSbS2 nanocrystals: size-control strategy, large-scale synthesis, and photoelectrochemistry. , 2015, Chemistry.

[9]  Meenakshi Gusain,et al.  Soft chemical synthesis of Ag3SbS3 with efficient and recyclable visible light photocatalytic properties , 2014 .

[10]  S. Shaji,et al.  CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications , 2014, Journal of Materials Science: Materials in Electronics.

[11]  Jiang Tang,et al.  Solution‐Processed Antimony Selenide Heterojunction Solar Cells , 2014 .

[12]  Jiang Tang,et al.  CuSbS2 as a promising earth-abundant photovoltaic absorber material: A combined theoretical and experimental study , 2014 .

[13]  W. Butler,et al.  Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper–Antimony–Sulfide , 2014 .

[14]  B. Krishnan,et al.  Photovoltaic structures using AgSb(SxSe1−x)2 thin films as absorber , 2014 .

[15]  Y. Tachibana,et al.  Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. , 2013, Journal of the American Chemical Society.

[16]  S. Miao,et al.  Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors , 2013 .

[17]  S. Shaji,et al.  p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3 , 2011 .

[18]  Haitao Liu,et al.  Biomolecule-assisted synthesis of Ag3SbS3 nanorods , 2010 .

[19]  M. Kanzari,et al.  Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method , 2009 .

[20]  Ramphal Sharma,et al.  A comparative study of the physical properties of CdS, Bi2S3 and composite CdS-Bi2S3 thin films for photosensor application , 2007 .

[21]  J. Schoonman,et al.  The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions , 2007 .

[22]  Alberto Piqué,et al.  Effect of film thickness on the properties of indium tin oxide thin films , 2000 .

[23]  M. Alpuche‐Aviles,et al.  Photoelectrochemical Study of Pyrargyrite in Acid Media , 2015 .

[24]  S. Lany,et al.  Self-regulated growth and tunable properties of CuSbS2 solar absorbers , 2015 .

[25]  Wei-Chih Yang,et al.  Enhanced Photovoltaic Performance in AgSbS2 Liquid-Junction Semiconductor-Sensitized Solar Cells , 2014 .

[26]  K. V. Khot,et al.  Nanocrystalline MoBi2Se5 Ternary Mixed Metal Chalcogenide Thin-films for Solar Cell Applications , 2014 .

[27]  S. Ikeda,et al.  Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack , 2014 .

[28]  Jen-Bin Shi,et al.  Ag3SbS3 Liquid-Junction Semiconductor-Sensitized Solar Cells , 2014 .

[29]  H. Kavak,et al.  Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method , 2006 .