Humidity suppression in Bi2O3/SWCNT nanohybrid structures for room temperature acetone detection

[1]  E. Xie,et al.  Electrospun Nb-doped CeO2 nanofibers for humidity independent acetone sensing , 2022, Applied Surface Science.

[2]  M. Mouis,et al.  Role of Working Temperature and Humidity in Acetone Detection by SnO2 Covered ZnO Nanowire Network Based Sensors , 2022, Nanomaterials.

[3]  Tien Dai Nguyen,et al.  Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites , 2020 .

[4]  T. Thundat,et al.  Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature , 2020, Journal of The Electrochemical Society.

[5]  Chunjoong Kim,et al.  pn-Heterojunction of the SWCNT/ZnO nanocomposite for temperature dependent reaction with hydrogen. , 2020, Journal of colloid and interface science.

[6]  S. Kalaiselvam,et al.  Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite , 2020 .

[7]  P. G. Verdini,et al.  Humidity Sensors for High Energy Physics Applications: A Review , 2020, IEEE Sensors Journal.

[8]  Zhihua Wang,et al.  α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone , 2020 .

[9]  Truong Thi Hien,et al.  ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction , 2020 .

[10]  Truong Thi Hien,et al.  Rb2CO3-decorated In2O3 nanoparticles for the room-temperature detection of sub-ppm level NO2 , 2020, Sensors and Actuators B: Chemical.

[11]  H. Haick,et al.  Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials , 2020, Nano-micro letters.

[12]  Y. Shimizu,et al.  Adsorption/Combustion-type Micro Gas Sensors: Typical VOC-sensing Properties and Material-design Approach for Highly Sensitive and Selective VOC Detection , 2020, Analytical Sciences.

[13]  D. Newport,et al.  A review of optical interferometry techniques for VOC detection , 2020, Sensors and Actuators A: Physical.

[14]  S. S. Kim,et al.  Resistive gas sensors based on metal-oxide nanowires , 2019, Journal of Applied Physics.

[15]  B. Ang,et al.  Advances in chemiresistive sensors for acetone gas detection , 2019, Materials Science in Semiconductor Processing.

[16]  H. S. Hassan,et al.  Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique , 2019, Sensors and Actuators B: Chemical.

[17]  Jong-Ryul Jeong,et al.  A Separated Receptor/Transducer Scheme as Strategy to Enhance the Gas Sensing Performance Using Hematite–Carbon Nanotube Composite , 2019, Sensors.

[18]  Minghui Yang,et al.  An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes , 2019, Sensors and Actuators B: Chemical.

[19]  Peiyu Wang,et al.  Enhanced acetone sensor based on Au functionalized In-doped ZnSnO3 nanofibers synthesized by electrospinning method. , 2019, Journal of colloid and interface science.

[20]  A. Wisitsoraat,et al.  Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures , 2019, Sensors and Actuators B: Chemical.

[21]  Myung Sik Choi,et al.  Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires , 2018, Sensors and Actuators B: Chemical.

[22]  Steven R. Young,et al.  Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate , 2018 .

[23]  T. He,et al.  CeO2-based mixed potential type acetone sensor using La1-xSrxCoO3 sensing electrode , 2018, Sensors and Actuators B: Chemical.

[24]  Jae-Hun Kim,et al.  Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review , 2018 .

[25]  Il-Doo Kim,et al.  Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors , 2018, Electronic Materials Letters.

[26]  F. Haghighat,et al.  TiO2 photocatalyst for removal of volatile organic compounds in gas phase - A review , 2018 .

[27]  Zhongjun Li,et al.  Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates , 2017 .

[28]  E. Essassi,et al.  Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. , 2012, Journal of nanoscience and nanotechnology.

[29]  M. Ray Photodegradation of the Volatile Organic Compounds in the Gas Phase: A Review , 2008 .

[30]  W. Li Facile synthesis of monodisperse Bi2O3 nanoparticles , 2006 .

[31]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[32]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[33]  G. Thomson,et al.  The Antoine equation for vapor-pressure data. , 1946, Chemical reviews.

[34]  N. Hung,et al.  Hole-supply-rate-controlled methanol-gas-sensing reaction over p-type Co3O4/single-walled carbon nanotube hybrid structures , 2021 .

[35]  N. Vuong,et al.  Co3O4–SWCNT composites for H2S gas sensor application , 2016 .

[36]  Roger Atkinson,et al.  Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review , 2003 .

[37]  Riichiro Saito,et al.  Raman spectroscopy on isolated single wall carbon nanotubes , 2002 .