Channel-adapted quantum error correction
暂无分享,去创建一个
[1] Yonina C. Eldar. A semidefinite programming approach to optimal unambiguous discrimination of quantumstates , 2003, IEEE Trans. Inf. Theory.
[2] P. Parrilo,et al. Detecting multipartite entanglement , 2004, quant-ph/0407143.
[3] Laflamme,et al. Perfect Quantum Error Correcting Code. , 1996, Physical review letters.
[4] Yonina C. Eldar. Mixed-quantum-state detection with inconclusive results , 2003 .
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] Ben Reichardt,et al. Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.
[7] Carlton M. Caves. Quantum Error Correction and Reversible Operations , 1998 .
[8] B. De Moor,et al. Optimizing completely positive maps using semidefinite programming , 2002 .
[9] I. L. Chuang,et al. Approximate quantum error correction can lead to better codes , 1997 .
[10] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[11] Eric M. Rains. A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.
[12] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[13] Yonina C. Eldar,et al. Optimal quantum detectors for unambiguous detection of mixed states (9 pages) , 2003, quant-ph/0312061.
[14] G. D’Ariano,et al. Optimal nonuniversally covariant cloning , 2001, quant-ph/0101100.
[15] Moe Z. Win,et al. Optimum quantum error recovery using semidefinite programming , 2007 .
[16] D. Gottesman. An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.
[17] F. Brandão,et al. Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. , 2004, Physical review letters.
[18] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[19] Pablo A. Parrilo,et al. Quantum algorithms for the ordered search problem via semidefinite programming , 2007 .
[20] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[21] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[22] R. F. Werner,et al. Comment on "Optimum Quantum Error Recovery using Semidefinite Programming" , 2006 .
[23] Peter W. Shor. Capacities of quantum channels and how to find them , 2003, Math. Program..
[24] DiVincenzo,et al. Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.
[25] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[26] J. Fiurášek,et al. Finding optimal strategies for minimum-error quantum-state discrimination , 2002, quant-ph/0201109.
[27] A. Kitaev. Quantum Error Correction with Imperfect Gates , 1997 .
[28] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[29] J. Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .
[30] P. Parrilo,et al. Distinguishing separable and entangled states. , 2001, Physical review letters.
[31] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[32] Jon Tyson. Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries , 2003, quant-ph/0306144.
[33] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[34] Yonina C. Eldar,et al. Designing optimal quantum detectors via semidefinite programming , 2003, IEEE Trans. Inf. Theory.
[35] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[36] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[37] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[38] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[39] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[40] Shinji Hara,et al. Suboptimal quantum-error-correcting procedure based on semidefinite programming , 2005 .
[41] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[42] E. Knill,et al. Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.
[43] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[44] Timothy F. Havel. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.
[45] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.