Phase-translation group actions on strongly monotone skew-product semiflows

We establish a convergence property for pseudo-bounded forward orbits of strongly monotone skew-product semiflows with invariant phasetranslation group actions. The results are then applied to obtain global convergence of certain chemical reaction networks whose associated systems in reaction coordinates are monotone, as well as the dynamics of certain reactiondiffusion systems in time-recurrent structure including periodicity, almost periodicity and almost automorphy.

[1]  J. Lei Monotone Dynamical Systems , 2013 .

[2]  Hongxiao Hu,et al.  Translation-invariant monotone systems II: Almost periodic/automorphic case , 2010 .

[3]  David Angeli,et al.  Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates , 2010, Journal of mathematical biology.

[4]  Jifa Jiang,et al.  Translation-invariant monotone systems, I: Autonomous/periodic case , 2010 .

[5]  Yi Wang Asymptotic symmetry in strongly monotone skew-product semiflows with applications , 2009 .

[6]  Janusz Mierczyński,et al.  Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications , 2008 .

[7]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[8]  R. Obaya,et al.  Stability and extensibility results for abstract skew-product semiflows☆ , 2007 .

[9]  H. Othmer Analysis of Complex Reaction Networks in Signal Transduction , Gene Control and Metabolism , 2006 .

[10]  Xiao-Qiang Zhao,et al.  Convergence in monotone and uniformly stable skew-product semiflows with applications , 2005 .

[11]  A. Arkin,et al.  Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[13]  E D Sontag,et al.  Some new directions in control theory inspired by systems biology. , 2004, Systems biology.

[14]  W. Shen,et al.  Convergence in almost periodic cooperative systems with a first integral , 2004 .

[15]  R. Obaya,et al.  Strictly ordered minimal subsets of a class of convex monotone skew-product semiflows , 2004 .

[16]  D. Burke,et al.  The spindle assembly and spindle position checkpoints. , 2003, Annual review of genetics.

[17]  Xiao-Qiang Zhao,et al.  Convergence in Monotone and Subhomogeneous Discrete Dynamical Systems on Product Banach Spaces , 2003 .

[18]  M. Sulis,et al.  PTEN: from pathology to biology. , 2003, Trends in cell biology.

[19]  E. Groisman,et al.  Making informed decisions: regulatory interactions between two-component systems. , 2003, Trends in microbiology.

[20]  Kwang-Hyun Cho,et al.  Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway , 2003, CMSB.

[21]  Xiao-Qiang Zhao,et al.  Global attractivity in monotone and subhomogeneous almost periodic systems , 2003 .

[22]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Gideon Bollag,et al.  GTPase activating proteins: critical regulators of intracellular signaling. , 2002, Biochimica et biophysica acta.

[24]  G. Sell,et al.  Attractors of Non-autonomous Parabolic Equations and Their Symmetry Properties , 2000 .

[25]  Yingfei Yi,et al.  Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows , 1998 .

[26]  Hiroshi Matano,et al.  Monotonicity and convergence results in order-preserving systems in the presence of symmetry , 1998 .

[27]  James P. Keener,et al.  Mathematical physiology , 1998 .

[28]  J. Ferrelljr,et al.  Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs , 1996 .

[29]  Jiang Jifa,et al.  Periodic monotone systems with an invariant function , 1996 .

[30]  J. F. Jiang,et al.  Sublinear discrete-time order-preserving dynamical systems , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  荻原俊子 Stability analysis in order-preserving systems in the presence of symmetry(対称性の入った順序保存力学系における安定性解析) , 1996 .

[32]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[33]  A. Grossman Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. , 1995, Annual review of genetics.

[34]  Hal L. Smith,et al.  Strictly nonautonomous cooperative system with a first integral , 1993 .

[35]  Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry , 1992 .

[36]  J. R. Haddock,et al.  Asymptotic constancy for pseudo monotone dynamical systems on function spaces , 1992 .

[37]  P. Polácik,et al.  Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .

[38]  O. Arino Monotone semi-flows which have a monotone first integral , 1991 .

[39]  M. Feinberg Some Recent Results in Chemical Reaction Network Theory , 1991 .

[40]  Peter Takáč,et al.  Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology , 1990 .

[41]  N. Alikakos,et al.  Discrete order preserving semigroups and stability for periodic parabolic differential equations , 1989 .

[42]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[43]  P. Polácik,et al.  Convergence in smooth strongly monotone flows defined by semilinear parabolic equations , 1989 .

[44]  Jianhong Wu Convergence of monotone dynamical systems with minimal equilibria , 1989 .

[45]  P. Polácik,et al.  Group actions on strongly monotone dynamical systems , 1989 .

[46]  M. Hirsch Stability and convergence in strongly monotone dynamical systems. , 1988 .

[47]  N. Alikakos,et al.  On stabilization of discrete monotone dynamical systems , 1987 .

[48]  Janusz Mierczyński,et al.  Strictly cooperative systems with a first integral , 1987 .

[49]  Hal L. Smith Cooperative systems of differential equations with concave nonlinearities , 1986 .

[50]  K. Deimling Nonlinear functional analysis , 1985 .

[51]  M. Hirsch The dynamical systems approach to differential equations , 1984 .

[52]  Hiroshi Matano,et al.  Asymptotic Behavior and Stability of Solutions of Semilinear Diffusion Equations , 1979 .

[53]  R. G. Casten,et al.  Instability results for reaction diffusion equations with Neumann boundary conditions , 1978 .

[54]  A. Fink Almost Periodic Differential Equations , 1974 .

[55]  G. Sell Topological dynamics and ordinary differential equations , 1971 .

[56]  George R. Sell,et al.  Nonautonomous differential equations and topological dynamics. II. Limiting equations , 1967 .

[57]  George R. Sell,et al.  NONAUTONOMOUS DIFFERENTIAL EQUATIONS AND TOPOLOGICAL DYNAMICS. I. THE BASIC THEORY , 1967 .

[58]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[59]  W. Veech,et al.  Almost Automorphic Functions on Groups , 1965 .

[60]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .