Anisotropic thermo-mechanical response of layered hexagonal boron nitride and black phosphorus: application as a simultaneous pressure and temperature sensor

Hexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. The knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of the anisotropic thermo-mechanical properties and exfoliation mechanism of these materials. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP. Here, we report accurate thermal expansion and compressibility measurements along the individual crystallographic axes, using in situ high-temperature and high-pressure high-resolution synchrotron X-ray diffraction. In particular, we have quantitatively determined the subtle variations of the in-plane thermo-mechanical parameters by subjecting these materials to hydrostatic pressure conditions and collecting a large number of data points in small pressure and temperature increments. Based on the anisotropic behavior of bP, we propose the use of this material as sensor for the simultaneous determination of pressure and temperature in the range 0-5 GPa, 298-1700 K.

[1]  Han Zhang,et al.  Recent Progress in Emerging Novel MXenes Based Materials and their Fascinating Sensing Applications. , 2023, Small.

[2]  M. Mezouar,et al.  Tracking structural phase transitions via single crystal x-ray diffraction at extreme conditions: advantages of extremely brilliant source , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  B. Jodoin,et al.  Thick Cu-hBN Coatings Using Pulsed Gas Dynamic Spray Process: Coating Formation Analysis and Characterization , 2022, Journal of Thermal Spray Technology.

[4]  L. Blunt,et al.  Reaction Sintering of Biocompatible Al2O3–hBN Ceramics , 2022, ACS omega.

[5]  Yuhai Dou,et al.  Atomically Thin Materials for Next-Generation Rechargeable Batteries. , 2021, Chemical reviews.

[6]  Xiangdong Zhang,et al.  Tribological performances of hexagonal boron nitride nanosheets via surface modification with silane coupling agent , 2021, SN Applied Sciences.

[7]  F. Fauth,et al.  Structural Features, Anisotropic Thermal Expansion, and Thermoelectric Performance in Bulk Black Phosphorus Synthesized under High Pressure. , 2020, Inorganic chemistry.

[8]  Yanbin Wang,et al.  Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020) , 2020, High Pressure Research.

[9]  T. Taniguchi,et al.  Structure refinement of black phosphorus under high pressure. , 2020, The Journal of chemical physics.

[10]  M. Serrano-Ruiz,et al.  Anisotropic thermal expansion of black phosphorus from nanoscale dynamics of phosphorene layers. , 2020, Nanoscale.

[11]  G. Kumar,et al.  Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using Taguchi technique , 2019, Composites Part B: Engineering.

[12]  Litian Hu,et al.  Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear. , 2019, Nanoscale.

[13]  Luis Vaquero-Garzon,et al.  Anisotropic buckling of few-layer black phosphorus. , 2019, Nanoscale.

[14]  F. Telesio,et al.  A Perspective on Recent Advances in Phosphorene Functionalization and Its Applications in Devices , 2018, European journal of inorganic chemistry.

[15]  A. Fitch,et al.  Combining a nine-crystal multi-analyser stage with a two-dimensional detector for high-resolution powder X-ray diffraction , 2018, Journal of Applied Crystallography.

[16]  G. Sansone,et al.  On the exfoliation and anisotropic thermal expansion of black phosphorus. , 2018, Chemical communications.

[17]  N. Koratkar,et al.  Recent advances in phosphorene as a sensing material , 2018, Nano Today.

[18]  Ali Erdemir,et al.  Approaches for Achieving Superlubricity in Two-Dimensional Materials. , 2018, ACS nano.

[19]  Chorng Haur Sow,et al.  Light-Matter Interactions in Phosphorene. , 2016, Accounts of chemical research.

[20]  R. Angel,et al.  EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching , 2016 .

[21]  Xianfan Xu,et al.  Auxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio. , 2016, Nano letters.

[22]  M. Serrano-Ruiz,et al.  The Role of Water in the Preparation and Stabilization of High‐Quality Phosphorene Flakes , 2015, Advanced materials interfaces.

[23]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[24]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[25]  Jonathan P. Wright,et al.  The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.

[26]  C. Balázsi,et al.  Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites , 2014 .

[27]  R. Angel,et al.  EosFit7c and a Fortran module (library) for equation of state calculations , 2014 .

[28]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[29]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[30]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[31]  Kenji Watanabe,et al.  Strong oxidation resistance of atomically thin boron nitride nanosheets. , 2014, ACS nano.

[32]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[33]  D. Corbridge Phosphorus: Chemistry, Biochemistry and Technology, Sixth Edition , 2013 .

[34]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[35]  G. Vaitheeswaran,et al.  Effect of van der Waals interactions on the structural and elastic properties of black phosphorus , 2012, 1211.3512.

[36]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[37]  G. Morard,et al.  High efficiency multichannel collimator for structural studies of liquids and low-Z materials at high pressures and temperatures. , 2011, The Review of scientific instruments.

[38]  S. Clark,et al.  Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus , 2010 .

[39]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[40]  P. Toulemonde,et al.  Optimization of Paris–Edinburgh press cell assemblies for in situ monochromatic X-ray diffraction and X-ray absorption , 2007 .

[41]  V. Pomjakushin,et al.  Angle-dispersive neutron diffraction under high pressure to 10 GPa , 2005 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[44]  M. Mezouar,et al.  Thermoelastic behaviour of hexagonal graphite-like boron nitride , 2000 .

[45]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[46]  V. Solozhenko,et al.  Compression and thermal expansion of hexagonal graphite-like boron nitride up to 7 GPa and 1800 K , 1997 .

[47]  Yusheng Zhao,et al.  P- V- T Data of hexagonal boron nitride h BN and determination of pressure and temperature using thermoelastic equations of state of multiple phases , 1997 .

[48]  A. Fitch,et al.  The High Resolution Powder Diffraction Beam Line at ESRF , 1996, Journal of research of the National Institute of Standards and Technology.

[49]  G. Will,et al.  Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa , 1995 .

[50]  J. Loveday,et al.  A large volume pressure cell for high temperatures , 1992 .

[51]  P. Loubeyre,et al.  The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations , 1988 .

[52]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[53]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[54]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[55]  M. Overy,et al.  The anisotropic thermal expansion of boron nitride , 1975 .

[56]  T. G. Worlton,et al.  Anisotropic Thermal Expansion and Compressibility of Black Phosphorus , 1974 .

[57]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[58]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[59]  R. S. Pease An X‐ray study of boron nitride , 1952 .

[60]  R. S. Pease Crystal Structure of Boron Nitride , 1950, Nature.

[61]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[62]  E. G. STEWARD,et al.  Structure of Graphite , 1947, Nature.

[63]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[64]  W. Paszkowicz,et al.  Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range , 2002 .

[65]  M. Mezouar,et al.  Noninvasive pressure and temperature estimation in large-volume apparatus by equation-of-state cross-calibration , 2002 .

[66]  R. Shaw Phosphorus chemistry , 1976, Nature.