Core-Collapse Simulations of Rotating Stars

We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because (1) rotation weakens the core bounce that seeds the neutrino-driven convection and (2) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosions that occur later and are weaker than the explosions produced from the collapse of nonrotating cores. However, because the convection is constrained to the polar regions, when the explosion occurs it is stronger along the polar axis. This asymmetric explosion may explain the polarization measurements of core-collapse supernovae. These asymmetries also provide a natural mechanism to mix the products of nucleosynthesis out into the helium and hydrogen layers of the star. We also discuss the role the collapse of these rotating stars plays in the generation of magnetic fields and neutron star kicks. Given a range of progenitor rotation periods, we predict a range of supernova energies for the same progenitor mass. The critical mass for black hole formation also depends upon the rotation speed of the progenitor.

[1]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[2]  F. Thielemann,et al.  Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium , 1995, astro-ph/9511088.

[3]  F. Marshall,et al.  Discovery of an Ultrafast X-Ray Pulsar in the Supernova Remnant N157B , 1998, astro-ph/9803214.

[4]  V. Trimble The origin and abundances of the chemical elements revisited , 1975 .

[5]  S. A. Colgate,et al.  What Can the Accretion-induced Collapse of White Dwarfs Really Explain? , 1998, astro-ph/9812058.

[6]  J. M. Leblanc,et al.  A Numerical Example of the Collapse of a Rotating Magnetized Star , 1970 .

[7]  A. Burrows,et al.  The deleptonization and heating of proton-neutron stars , 1981 .

[8]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[9]  H. Janka,et al.  Ledoux Convection in Protoneutron Stars—A Clue to Supernova Nucleosynthesis? , 1996, astro-ph/9610203.

[10]  Katsuhiko Sato,et al.  Numerical study of rotating core collapse in supernova explosions , 1994 .

[11]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[12]  A. S. Umar,et al.  The Interplay between Proto-Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae , 1997, astro-ph/9709184.

[13]  S. Woosley,et al.  A two-dimensional supernova model with rotation and nuclear burning , 1983 .

[14]  S. Woosley,et al.  Presupernova evolution of massive stars. , 1978 .

[15]  E. Phinney,et al.  Birth kicks as the origin of pulsar rotation , 1998, Nature.

[16]  N. Kawai,et al.  Discovery of an unusual hard X-ray source in the region of supernova 1987A , 1987, Nature.

[17]  L. Finn,et al.  Determining gravitational radiation from Newtonian self-gravitating systems , 1990 .

[18]  James R. Wilson,et al.  Convection above the neutrinosphere in type II supernovae , 1993 .

[19]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[20]  H. Ögelman,et al.  Timing neutron stars , 1989 .

[21]  Lifan Wang,et al.  Broadband Polarimetry of Supernovae: SN 1994D, SN 1994Y, SN 1994ae, SN 1995D, and SN 1995H , 1996, astro-ph/9602155.

[22]  I. Fukuda,et al.  A STATISTICAL STUDY OF ROTATIONAL VELOCITIES OF THE STARS. , 1982 .

[23]  Katsuhiko Sato,et al.  Gravitational radiation from rotational collapse of a supernova core , 1995 .

[24]  Benjamin J. Owen,et al.  Gravitational Radiation Instability in Hot Young Neutron Stars , 1998, gr-qc/9803053.

[25]  Shlomo Nir,et al.  NATO ASI Series , 1995 .

[26]  Analysis of the polarization and flux spectra of SN 1993J , 1995, astro-ph/9510031.

[27]  Chris L. Fryer,et al.  Iron Opacity and the Pulsar of SN 1987A , 1998, astro-ph/9808309.

[28]  S. Blinnikov,et al.  Equation of State of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy , 1996 .

[29]  J. Tassoul,et al.  Theory of rotating stars , 1978 .

[30]  E. Symbalisty Magnetorotational iron core collapse , 1984 .

[31]  G. Mendell,et al.  Second-order rotational effects on the r-modes of neutron stars. , 1999, gr-qc/9902052.

[32]  M. Livio,et al.  The Rotation Rates of White Dwarfs and Pulsars , 1998 .

[33]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[34]  A Comparison of Boltzmann and Multigroup Flux-limited Diffusion Neutrino Transport during the Postbounce Shock Reheating Phase in Core-Collapse Supernovae , 1998, astro-ph/9805276.

[35]  Chris L. Fryer,et al.  Double Neutron Star Systems and Natal Neutron Star Kicks , 1997, astro-ph/9706031.

[36]  A. Burrows,et al.  A Theory of Supernova Explosions , 1993 .

[37]  Richard H. White,et al.  The Hydrodynamic Behavior of Supernovae Explosions , 1964 .

[38]  J. Spyromilio,et al.  Spectral line profiles of iron and nickel in supernova 1987A. Evidence for a fragmented nickel bubble , 1990 .

[39]  A. Endal,et al.  Evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M/sub sun/ stars , 1978 .

[40]  G. Skinner,et al.  Discovery of hard X-ray emission from supernova 1987A , 1987, Nature.

[41]  Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[42]  K. Riper General relativistic hydrodynamics and the adiabatic collapse of stellar cores , 1979 .

[43]  James R. Wilson,et al.  Convection in core collapse supernovae , 1988 .

[44]  M. Leising,et al.  Gamma-ray line emission from SN1987A , 1988, Nature.

[45]  P. Ledoux,et al.  Stellar Models with Convection and with Discontinuity of the Mean Molecular Weight , 1947 .

[46]  E. Müller,et al.  Core Collapse With Rotation And Neutron Star Formation , 1989 .

[47]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[48]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[49]  A. S. Umar,et al.  An Investigation of Neutrino-driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport , 1996, Astrophysical Journal.

[50]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[51]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[52]  Lifan Wang,et al.  The supernova-gamma-ray burst connection , 1998, astro-ph/9806212.

[53]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[54]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .