Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of medical imaging applications on the future of healthcare.

[1]  Marieke E Timmerman,et al.  Multilevel component analysis. , 2006, The British journal of mathematical and statistical psychology.

[2]  Simon K. Warfield,et al.  SoftSTAPLE: Truth and performance-level estimation from probabilistic segmentations , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[3]  Marius George Linguraru,et al.  Multiresolution Hierarchical Shape Models in 3D Subcortical Brain Structures , 2013, MICCAI.

[4]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[5]  Marius George Linguraru,et al.  Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs , 2011, Abdominal Imaging.

[6]  Michael Petrides,et al.  Three-Dimensional Probabilistic Atlas of the Human Orbitofrontal Sulci in Standardized Stereotaxic Space , 2001, NeuroImage.

[7]  Martin Styner,et al.  Particle-Based Shape Analysis of Multi-object Complexes , 2008, MICCAI.

[8]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[9]  Ben Glocker,et al.  Automatic Quality Control of Cardiac MRI Segmentation in Large-Scale Population Imaging , 2017, MICCAI.

[10]  Mert Cetin,et al.  Coupled Nonparametric Shape and Moment-Based Intershape Pose Priors for Multiple Basal Ganglia Structure Segmentation , 2010, IEEE Transactions on Medical Imaging.

[11]  Timothy F. Cootes,et al.  Active shape models , 1998 .

[12]  Zhuowen Tu,et al.  Combining Generative and Discriminative Models for Semantic Segmentation of CT Scans via Active Learning , 2011, IPMI.

[13]  Farida Cheriet,et al.  3D registration of MR and X-ray spine images using an articulated model , 2012, Comput. Medical Imaging Graph..

[14]  Ernesto Zacur,et al.  Statistical analysis of relative pose information of subcortical nuclei: Application on ADNI data , 2011, NeuroImage.

[15]  Pengcheng Shi,et al.  Domain partitioning level set surface for topology constrained multiobject segmentation , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[16]  Dorin Comaniciu,et al.  Hierarchical parsing and semantic navigation of full body CT data , 2009, Medical Imaging.

[17]  Michel Desvignes,et al.  Shortest-Path Constraints for 3D Multiobject Semiautomatic Segmentation Via Clustering and Graph Cut , 2013, IEEE Transactions on Image Processing.

[18]  Dinggang Shen,et al.  An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures , 2001, IEEE Transactions on Medical Imaging.

[19]  Gregg Tracton,et al.  Training models of anatomic shape variability. , 2008, Medical physics.

[20]  Hervé Delingette,et al.  Automatic Segmentation of Bladder and Prostate Using Coupled 3D Deformable Models , 2007, MICCAI.

[21]  Pierre-Louis Bazin,et al.  TOADS: topology-preserving, anatomy-driven segmentation , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[22]  Hyunjin Park,et al.  Construction of an abdominal probabilistic atlas and its application in segmentation , 2003, IEEE Transactions on Medical Imaging.

[23]  Stuart Crozier,et al.  Segmentation of lumbar intervertebral discs from high-resolution 3D MR images using multi-level statistical shape models , 2014, MICCAI 2014.

[24]  Jayaram K. Udupa,et al.  Fuzzy model-based body-wide anatomy recognition in medical images , 2013, Medical Imaging.

[25]  Ronald M. Summers,et al.  Statistical Location Model for Abdominal Organ Localization , 2009, MICCAI.

[26]  Dinggang Shen,et al.  Hierarchical active shape models, using the wavelet transform , 2003, IEEE Transactions on Medical Imaging.

[27]  Norman I. Badler,et al.  A kinematic model of the human spine and torso , 1991, IEEE Computer Graphics and Applications.

[28]  Martin Styner,et al.  Statistics of Pose and Shape in Multi-object Complexes Using Principal Geodesic Analysis , 2006, MIAR.

[29]  Daguang Xu,et al.  Automatic Liver Segmentation Using an Adversarial Image-to-Image Network , 2017, MICCAI.

[30]  Carl-Eric Aubin,et al.  Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model , 2007, Medical & Biological Engineering & Computing.

[31]  Cristian Lorenz,et al.  Spine Segmentation Using Articulated Shape Models , 2008, MICCAI.

[32]  Eduard Schreibmann,et al.  Multiatlas segmentation of thoracic and abdominal anatomy with level set‐based local search , 2014, Journal of applied clinical medical physics.

[33]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[34]  Antonio Criminisi,et al.  Decision Forests with Long-Range Spatial Context for Organ Localization in CT Volumes , 2009 .

[35]  Martin Styner,et al.  Statistical shape analysis of neuroanatomical structures based on medial models , 2003, Medical Image Anal..

[36]  Yen-Wei Chen,et al.  Automated Segmentation of the Liver from 3D CT Images Using Probabilistic Atlas and Multi-level Statistical Shape Model , 2007, MICCAI.

[37]  Brian B. Avants,et al.  Adaptive graph cuts with tissue priors for brain MRI segmentation , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[38]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[39]  Guorong Wu,et al.  Multiple-Atlas Segmentation in Medical Imaging , 2016 .

[40]  Stefan Wesarg,et al.  Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images , 2013, Journal of Digital Imaging.

[41]  Thorsten M. Buzug,et al.  Multi-object active shape model construction for abdomen segmentation: Preliminary results , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[43]  Xia Li,et al.  Automatic registration of whole body serial micro CT images with a combination of point-based and intensity-based registration techniques , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[44]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[45]  Lin Yang,et al.  Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images , 2017, MICCAI.

[46]  Xinjian Chen,et al.  Hierarchical Scale-Based Multiobject Recognition of 3-D Anatomical Structures , 2012, IEEE Transactions on Medical Imaging.

[47]  Max A. Viergever,et al.  Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans , 2009, IEEE Transactions on Medical Imaging.

[48]  Daniel Rueckert,et al.  Automated Abdominal Multi-Organ Segmentation With Subject-Specific Atlas Generation , 2013, IEEE Transactions on Medical Imaging.

[49]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[50]  Masoom A Haider,et al.  Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. , 2007, International journal of radiation oncology, biology, physics.

[51]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[52]  Bennett A Landman,et al.  Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning , 2015, Medical Image Anal..

[53]  Ali Kamen,et al.  Constrained Surface Evolutions for Prostate and Bladder Segmentation in CT Images , 2005, CVBIA.

[54]  Samuel Kadoury,et al.  3D Registration of Articulated Spine Models Using Markov Random Fields , 2009 .

[55]  Edwin R. Hancock,et al.  Modelling Human Shape with Articulated Shape Mixtures , 2004, SSPR/SPR.

[56]  Dean C. Barratt,et al.  Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks , 2018, IEEE Transactions on Medical Imaging.

[57]  Dewey Odhner,et al.  Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration. , 2016, Medical physics.

[58]  Isabelle Bloch,et al.  Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations , 2012, Comput. Vis. Image Underst..

[59]  J. Charles,et al.  A Sino-German λ 6 cm polarization survey of the Galactic plane I . Survey strategy and results for the first survey region , 2006 .

[60]  Max A. Viergever,et al.  Automatic Segmentation of MR Brain Images With a Convolutional Neural Network , 2016, IEEE Transactions on Medical Imaging.

[61]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[62]  Örjan Smedby,et al.  Multi-organ Segmentation Using Shape Model Guided Local Phase Analysis , 2015, MICCAI.

[63]  Conglin Lu,et al.  Statistical Multi-Object Shape Models , 2007, International Journal of Computer Vision.

[64]  Timo Kohlberger,et al.  Automatic Multi-organ Segmentation Using Learning-Based Segmentation and Level Set Optimization , 2011, MICCAI.

[65]  Nikos Komodakis,et al.  (Hyper)-graphical models in biomedical image analysis , 2016, Medical Image Anal..

[66]  J. V. Van Buren,et al.  An outline atlas of the human basal ganglia with estimation of anatomical variants. , 1962, Journal of neurosurgery.

[67]  Yoshinobu Sato,et al.  Automated CT Segmentation of Diseased Hip Using Hierarchical and Conditional Statistical Shape Models , 2013, MICCAI.

[68]  Alfred O. Hero,et al.  Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans , 2010, IEICE Trans. Inf. Syst..

[69]  Guoyan Zheng,et al.  Multi-object Model-Based Multi-atlas Segmentation Constrained Grid Cut for Automatic Segmentation of Lumbar Vertebrae from CT Images. , 2018, Advances in experimental medicine and biology.

[70]  Nicholas Ayache,et al.  Articulated Spine Models for 3-D Reconstruction From Partial Radiographic Data , 2008, IEEE Transactions on Biomedical Engineering.

[71]  Ron Kikinis,et al.  Simultaneous Multi-object Segmentation Using Local Robust Statistics and Contour Interaction , 2010, MCV.

[72]  Yoshinobu Sato,et al.  Automated Segmentation of the Femur and Pelvis from 3D CT Data of Diseased Hip Using Hierarchical Statistical Shape Model of Joint Structure , 2009, MICCAI.

[73]  Joshua V. Stough,et al.  Conditional-mean initialization using neighboring objects in deformable model segmentation , 2008, SPIE Medical Imaging.

[74]  Christian Wachinger,et al.  DeepNAT: Deep convolutional neural network for segmenting neuroanatomy , 2017, NeuroImage.

[75]  Paolo Zaffino,et al.  Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. , 2014, Medical physics.

[76]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Stefan Zachow,et al.  Multi-object Segmentation of Head Bones , 2009, The MIDAS Journal.

[78]  Conglin Lu,et al.  Estimating the Statistics of Multi-object Anatomic Geometry Using Inter-object Relationships , 2005, DSSCV.

[79]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[80]  Stephen M. Pizer,et al.  Multi-figure Anatomical Objects for Shape Statistics , 2005, IPMI.

[81]  Christopher J. Taylor,et al.  Automatic Measurement of Vertebral Shape using Active Shape Models , 1996, BMVC.

[82]  Witold Pedrycz,et al.  Unsupervised hierarchical image segmentation with level set and additive operator splitting , 2005, Pattern Recognit. Lett..

[83]  Dinggang Shen,et al.  Predictive modeling of anatomic structures using canonical correlation analysis , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[84]  Marcos Martín-Fernández,et al.  Automatic articulated registration of hand radiographs , 2009, Image Vis. Comput..

[85]  Isabelle Bloch,et al.  Local Reasoning in Fuzzy Attribute Graphs for Optimizing Sequential Segmentation , 2007, GbRPR.

[86]  Bostjan Likar,et al.  Segmenting Articulated Structures by Hierarchical Statistical Modeling of Shape, Appearance, and Topology , 2001, MICCAI.

[87]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[88]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[89]  Ronald M. Summers,et al.  Abdominal Multi-organ CT Segmentation Using Organ Correlation Graph and Prediction-Based Shape and Location Priors , 2013, MICCAI.

[90]  Ben Glocker,et al.  Multi-modal Learning from Unpaired Images: Application to Multi-organ Segmentation in CT and MRI , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[91]  Surjith Vattoth,et al.  MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization , 2014, The neuroradiology journal.

[92]  Christophe Lenglet,et al.  Semiautomatic Segmentation of Brain Subcortical Structures From High-Field MRI , 2014, IEEE Journal of Biomedical and Health Informatics.

[93]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[94]  Seyed-Ahmad Ahmadi,et al.  Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound , 2016, Comput. Vis. Image Underst..

[95]  Nicholas Ayache,et al.  Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models , 2006, AMDO.

[96]  Jayaram K. Udupa,et al.  Fuzzy connectedness and image segmentation , 2003, Proc. IEEE.

[97]  Marius George Linguraru,et al.  Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors , 2015, Medical Image Anal..

[98]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[100]  Isabelle Bloch,et al.  Integrating information from pathological brain MRI into an anatomo-functional model , 2006 .

[101]  Isabelle Bloch,et al.  Computational modeling of thoracic and abdominal anatomy using spatial relationships for image segmentation , 2004, Real Time Imaging.

[102]  Daniel Rueckert,et al.  Multi-Atlas Segmentation Using Partially Annotated Data: Methods and Annotation Strategies , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Konstantinos Kamnitsas,et al.  DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks , 2016, IEEE Transactions on Medical Imaging.

[104]  A. du Bois d'Aische,et al.  An Improved Articulated Registration Method For Neck Images , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[105]  Yaozong Gao,et al.  Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests , 2016, IEEE Transactions on Medical Imaging.

[106]  Ying Bai,et al.  A multiple geometric deformable model framework for homeomorphic 3D medical image segmentation , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[107]  Alan C. Evans,et al.  A fully automatic and robust brain MRI tissue classification method , 2003, Medical Image Anal..

[108]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[109]  Hans-Christian Hege,et al.  Multi-object Segmentation with Coupled Deformable Models , 2008 .

[110]  Hugues Benoit-Cattin,et al.  Semi-supervised Learning for Segmentation Under Semantic Constraint , 2018, MICCAI.

[111]  F. Tony,et al.  A multiphase level set framework for image segmentation using theMumford and Shah modelLuminita , 2001 .

[112]  Hidekata Hontani,et al.  Accurate and Robust Registration of Nonrigid Surface Using Hierarchical Statistical Shape Model , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[113]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[115]  J. Sandberg,et al.  Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. , 2010, Medical physics.

[116]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Zhen Zhen Xu,et al.  Automatic Gallbladder Location and Segmentation Based on Anatomical Knowledge , 2014 .

[118]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[119]  Simon Ameer-Beg,et al.  Biomedical Imaging: From Nano to Macro , 2008 .

[120]  Christopher J. Taylor,et al.  Kernel Principal Component Analysis and the construction of non-linear Active Shape Models , 2001, BMVC.

[121]  Ronald M. Summers,et al.  Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[122]  Raúl San José Estépar,et al.  Multi-structure Segmentation from Partially Labeled Datasets. Application to Body Composition Measurements on CT Scans , 2018, RAMBO+BIA+TIA@MICCAI.

[123]  Martha Elizabeth Shenton,et al.  A 3D interactive multi-object segmentation tool using local robust statistics driven active contours , 2012, Medical Image Anal..

[124]  Ronald M. Summers,et al.  Fast Correction Method for Abdominal Multi-Organ Segmentation Using 2 D / 3 D Free Form Deformation and Posterior Shape Models , 2015 .

[125]  Marius George Linguraru,et al.  A Generic Approach to Lung Field Segmentation From Chest Radiographs Using Deep Space and Shape Learning , 2018, IEEE Transactions on Biomedical Engineering.

[126]  Juan J. Cerrolaza,et al.  Hierarchical Statistical Shape Models of Multiobject Anatomical Structures: Application to Brain MRI , 2012, IEEE Transactions on Medical Imaging.

[127]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[128]  Sotirios A. Tsaftaris,et al.  Deep Multi-Class Segmentation Without Ground-Truth Labels , 2018 .

[129]  Jose Dolz,et al.  3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study , 2016, NeuroImage.

[130]  Ronald M. Summers,et al.  Machine learning and radiology , 2012, Medical Image Anal..

[131]  Jerry L. Prince,et al.  A multi-compartment segmentation framework with homeomorphic level sets , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[132]  Purang Abolmaesumi,et al.  Lumbar Spine Segmentation Using a Statistical Multi-Vertebrae Anatomical Shape+Pose Model , 2013, IEEE Transactions on Medical Imaging.

[133]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[134]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[135]  Eam Khwang Teoh,et al.  Robust MR Image Segmentation Using 3D Partitioned Active Shape Models , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[136]  S. Sutherland Eye, brain and vision , 1993, Nature.

[137]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[138]  Dorin Comaniciu,et al.  Multiple object detection by sequential monte carlo and Hierarchical Detection Network , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[139]  Ludovic Humbert,et al.  3-D Subject-Specific Shape and Density Estimation of the Lumbar Spine From a Single Anteroposterior DXA Image Including Assessment of Cortical and Trabecular Bone , 2018, IEEE Transactions on Medical Imaging.

[140]  Xiangrong Zhou,et al.  Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method , 2017, Medical physics.

[141]  Stefan Wesarg,et al.  Automatic pancreas segmentation in contrast enhanced CT data using learned spatial anatomy and texture descriptors , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[142]  Ronald M. Summers,et al.  Hierarchical patch generation for multilevel statistical shape analysis by principal factor analysis decomposition , 2010, Medical Imaging.

[143]  Simon K. Warfield,et al.  Estimation of the deformations induced by articulated bodies: Registration of the spinal column , 2007, Biomed. Signal Process. Control..

[144]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[145]  Nadia Magnenat-Thalmann,et al.  Medical image analysis , 1999, Medical Image Anal..

[146]  H. Brody Medical imaging , 2013, Nature.

[147]  Max A. Viergever,et al.  ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images , 2017, IEEE Transactions on Medical Imaging.

[148]  R. Bowden Learning Statistical Models of Human Motion , 2000 .

[149]  Andreas K. Maier,et al.  Towards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network , 2017, ArXiv.

[150]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[151]  Yoshinobu Sato,et al.  Construction of Hierarchical Multi-Organ Statistical Atlases and Their Application to Multi-Organ Segmentation from CT Images , 2008, MICCAI.

[152]  João Manuel R. S. Tavares,et al.  Segmentation of female pelvic organs in axial magnetic resonance images using coupled geometric deformable models , 2013, Comput. Biol. Medicine.

[153]  Stefan Zachow,et al.  Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative , 2019, Medical Image Anal..

[154]  João Manuel R S Tavares,et al.  A shape guided C-V model to segment the levator ani muscle in axial magnetic resonance images. , 2010, Medical engineering & physics.

[155]  Timothy F. Cootes,et al.  Non-linear point distribution modelling using a multi-layer perceptron , 1995, Image Vis. Comput..

[156]  Ronald M. Summers,et al.  Soft Multi-organ Shape Models via Generalized PCA: A General Framework , 2016, MICCAI.

[157]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[158]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[159]  Guoyan Zheng,et al.  Constrained Statistical Modelling of Knee Flexion From Multi-Pose Magnetic Resonance Imaging , 2016, IEEE Transactions on Medical Imaging.

[160]  Simon K. Warfield,et al.  A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth , 2017, Scientific Reports.

[161]  D. Louis Collins,et al.  Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis , 1991, Medical Imaging.

[162]  Alejandro F. Frangi,et al.  Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models , 2015, IEEE Transactions on Medical Imaging.

[163]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[164]  Yuichiro Hayashi,et al.  Deep learning and its application to medical image segmentation , 2018, ArXiv.

[165]  Woody Sherman,et al.  Improved Docking of Polypeptides with Glide , 2013, J. Chem. Inf. Model..

[166]  Jing Bai,et al.  Multiple Abdominal Organ Segmentation: An Atlas-Based Fuzzy Connectedness Approach , 2007, IEEE Transactions on Information Technology in Biomedicine.

[167]  Antoon F. M. Moorman,et al.  An interactive three-dimensional digital atlas and quantitative database of human development , 2016, Science.

[168]  Chenyang Xu,et al.  A General Framework for Image Segmentation Using Ordered Spatial Dependency , 2006, MICCAI.

[169]  Nicholas Ayache,et al.  3-D Consistent and Robust Segmentation of Cardiac Images by Deep Learning With Spatial Propagation , 2018, IEEE Transactions on Medical Imaging.

[170]  Ronald M. Summers,et al.  Anatomy-specific classification of medical images using deep convolutional nets , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[171]  Marius George Linguraru,et al.  Generalized Multiresolution Hierarchical Shape Models via Automatic Landmark Clusterization , 2014, MICCAI.

[172]  Marius George Linguraru,et al.  Marginal shape deep learning: applications to pediatric lung field segmentation , 2017, Medical Imaging.

[173]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[174]  Daniel Cremers,et al.  Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking , 2017, ArXiv.

[175]  Eyal M. Reingold,et al.  The Holistic Processing Account of Visual Expertise in Medical Image Perception: A Review , 2017, Front. Psychol..

[176]  Richard G. Swensson,et al.  A two-stage detection model applied to skilled visual search by radiologists , 1980 .

[177]  Hideki Kakeya,et al.  3D U-JAPA-Net: Mixture of Convolutional Networks for Abdominal Multi-organ CT Segmentation , 2018, MICCAI.

[178]  Benoit M. Dawant,et al.  Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects , 1999, IEEE Transactions on Medical Imaging.

[179]  Ronald M. Summers,et al.  Atlas-Based Automated Segmentation of Spleen and Liver Using Adaptive Enhancement Estimation , 2009, MICCAI.

[180]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[181]  WangHongzhi,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013 .

[182]  Isabelle Bloch,et al.  Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition--Application to 3D brain imaging , 2003, Artif. Intell..

[183]  Jennifer Fedor,et al.  Cortical and subcortical brain morphometry differences between patients with autism spectrum disorders (ASD) and healthy individuals across the lifespan: results from the ENIGMA-ASD working group , 2017 .

[184]  Ronald M. Summers,et al.  Organ Pose Distribution Model and an MAP Framework for Automated Abdominal Multi-organ Localization , 2010, MIAR.

[185]  Antonio Criminisi,et al.  Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences , 2011, MICCAI.

[186]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[187]  Yan Wang,et al.  Abdominal multi-organ segmentation with organ-attention networks and statistical fusion , 2018, Medical Image Anal..

[188]  Stuart Crozier,et al.  Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee , 2007, Physics in medicine and biology.

[189]  Purang Abolmaesumi,et al.  Automatic Segmentation of Wrist Bones in CT Using a Statistical Wrist Shape $+$ Pose Model , 2016, IEEE Transactions on Medical Imaging.

[190]  Isabelle Bloch,et al.  Incorporating a pre-attention mechanism in fuzzy attribute graphs for sequential image segmentation , 2008 .

[191]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[192]  Viktor Larsson,et al.  Multiatlas Segmentation Using Robust Feature-Based Registration , 2017, Cloud-Based Benchmarking of Medical Image Analysis.

[193]  Hamid Soltanian-Zadeh,et al.  Constrained optimization of nonparametric entropy-based segmentation of brain structures , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[194]  Daniel Rueckert,et al.  Hierarchical Statistical Shape Analysis and Prediction of Sub-cortical Brain Structures , 2007 .

[195]  Akinobu Shimizu,et al.  Segmentation of multiple organs in non-contrast 3D abdominal CT images , 2007, International Journal of Computer Assisted Radiology and Surgery.

[196]  Chandra Kambhamettu,et al.  A framework for multiple snakes and its applications , 2006, Pattern Recognit..

[197]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[198]  David C. Hogg,et al.  Extending the Point Distribution Model Using Polar Coordinates , 1995, CAIP.

[199]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[200]  Jayaram K. Udupa,et al.  Optimal hierarchies for fuzzy object models , 2013, Medical Imaging.

[201]  Yuichiro Hayashi,et al.  Hierarchical 3D fully convolutional networks for multi-organ segmentation , 2017, ArXiv.

[202]  Yen-Wei Chen,et al.  Simultaneous Segmentation of Multiple Organs Using Random Walks , 2016, J. Inf. Process..

[203]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[204]  Jayaram K. Udupa,et al.  Fuzzy object modeling , 2011, Medical Imaging.

[205]  Xiao Han,et al.  Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms , 2007, IEEE Transactions on Medical Imaging.

[206]  M. Alper Selver,et al.  Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy , 2014, Comput. Methods Programs Biomed..

[207]  Ben Glocker,et al.  NeuroNet: Fast and Robust Reproduction of Multiple Brain Image Segmentation Pipelines , 2018, ArXiv.

[208]  Nikos Paragios,et al.  Segmentation, ordering and multi-object tracking using graphical models , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[209]  Joel D. Stitzel,et al.  Comparison of Organ Location, Morphology, and Rib Coverage of a Midsized Male in the Supine and Seated Positions , 2013, Comput. Math. Methods Medicine.

[210]  Wei Shen,et al.  Training Multi-organ Segmentation Networks with Sample Selection by Relaxed Upper Confident Bound , 2018, MICCAI.

[211]  Marcos Martin-Fernandez,et al.  Multiphase level set algorithm for coupled segmentation of multiple regions. Application to MRI segmentation , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[212]  Dominique Hasboun,et al.  Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures , 1998, MICCAI.

[213]  F.E. Zajac,et al.  An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures , 1990, IEEE Transactions on Biomedical Engineering.

[214]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[215]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[216]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[217]  Matías N. Bossa,et al.  Statistical Model of Similarity Transformations: Building a Multi-Object Pose , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[218]  Boštjan Likar,et al.  SEGMENTATION OF ANATOMICAL STRUCTURES BY CONNECTED STATISTICAL MODELS , 2011 .

[219]  Hsin-Chen Chen,et al.  Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation. , 2010, Medical physics.

[220]  Jennifer S Gregory,et al.  The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane , 2012, Computer methods in biomechanics and biomedical engineering.

[221]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[222]  Ron Kimmel,et al.  Hierarchical Segmentation of Thin Structures in Volumetric Medical Images , 2003, MICCAI.

[223]  Isabelle Bloch,et al.  From Generic Knowledge to Specific Reasoning for Medical Image Interpretation Using Graph based Representations , 2007, IJCAI.

[224]  Marius George Linguraru,et al.  Multi-Organ Segmentation with Missing Organs in Abdominal CT Images , 2012, MICCAI.

[225]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[226]  Reinhard Wilhelm,et al.  Shape Analysis , 2000, CC.

[227]  Hubert Labelle,et al.  Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model. , 2011, Medical engineering & physics.

[228]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[229]  Junzhou Huang,et al.  3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models , 2011, MICCAI.

[230]  Mattias P. Heinrich,et al.  Multi-organ Segmentation Using Vantage Point Forests and Binary Context Features , 2016, MICCAI.

[231]  Conglin Lu,et al.  Automatic male pelvis segmentation from CT images via statistically trained multi-object deformable m-rep models , 2004 .

[232]  Zoltan Kato,et al.  A Markov random field image segmentation model for color textured images , 2006, Image Vis. Comput..

[233]  P. Thomas Fletcher,et al.  Deformable m-rep segmentation of object complexes , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[234]  Timo Kohlberger,et al.  Soft Level Set Coupling for LV Segmentation in Gated Perfusion SPECT , 2007, MICCAI.

[235]  H Wakuri,et al.  Considerations on the morphology and terminology of the organs. , 1991, Okajimas folia anatomica Japonica.

[236]  Pheng-Ann Heng,et al.  Point-based visuo-haptic simulation of multi-organ for virtual surgery , 2017 .

[237]  Isabelle Bloch,et al.  Fuzzy spatial relation ontology for image interpretation , 2008, Fuzzy Sets Syst..

[238]  Satrajit S. Ghosh,et al.  Mindboggle: Automated brain labeling with multiple atlases , 2005, BMC Medical Imaging.

[239]  Yaozong Gao,et al.  ASDNet: Attention Based Semi-supervised Deep Networks for Medical Image Segmentation , 2018, MICCAI.

[240]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[241]  Geoffroy Fouquier,et al.  Incorporating a pre-attention mechanism in fuzzy attribute graphs for sequential image segmentation , 2008 .

[242]  Chengwen Chu,et al.  Multi-organ Segmentation Based on Spatially-Divided Probabilistic Atlas from 3D Abdominal CT Images , 2013, MICCAI.

[243]  Thomas Brox,et al.  Level Set Based Image Segmentation with Multiple Regions , 2004, DAGM-Symposium.

[244]  Mubarak Shah,et al.  Modeling Interaction for Segmentation of Neighboring Structures , 2009, IEEE Transactions on Information Technology in Biomedicine.

[245]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[246]  Alan C. Evans,et al.  Multiple surface identification and matching in magnetic resonance images , 1994, Other Conferences.

[247]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[248]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[249]  Hans-Christian Hege,et al.  An articulated statistical shape model for accurate hip joint segmentation , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[250]  Martin Styner,et al.  Multi-Object Analysis of Volume, Pose, and Shape Using Statistical Discrimination , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[251]  Guoyan Zheng,et al.  Articulated Statistical Shape Model-Based 2D-3D Reconstruction of a Hip Joint , 2014, IPCAI.

[252]  Jurgen Fripp,et al.  On the Use of Coupled Shape Priors for Segmentation of Magnetic Resonance Images of the Knee , 2015, IEEE Journal of Biomedical and Health Informatics.

[253]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[254]  Xue Yang,et al.  Weighted Partitioned Active Shape Model for Optic Pathway Segmentation in MRI , 2014, CLIP@MICCAI.

[255]  Li-Chieh Kuo,et al.  Functional workspace for precision manipulation between thumb and fingers in normal hands. , 2009, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.

[256]  Ronald M. Summers,et al.  Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT , 2012, Medical Image Anal..

[257]  Xiaodong Wu,et al.  Simultaneous Segmentation of Multiple Closed Surfaces Using Optimal Graph Searching , 2005, IPMI.

[258]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[259]  Michel Desvignes,et al.  Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using Spatial Relations and Hierarchically-Registered Atlases , 2014, MCV.

[260]  Robert T. Schultz,et al.  Segmentation and Measurement of the Cortex from 3D MR Images , 1998, MICCAI.

[261]  Isabelle Bloch,et al.  Integration of fuzzy spatial relations in deformable models - Application to brain MRI segmentation , 2006, Pattern Recognit..

[262]  Timothy F. Cootes,et al.  A Non-linear Generalisation of PDMs using Polynomial Regression , 1994, BMVC.

[263]  Isabelle Bloch,et al.  3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models , 2009, Fuzzy Sets Syst..

[264]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[265]  Klaus-Peter Gapp,et al.  Basic Meanings of Spatial Computation and Evaluation in 3D Space , 1994 .

[266]  Allison M. Okamura,et al.  Design of patient-specific concentric tube robots using path planning from 3-D ultrasound , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[267]  Yuichiro Hayashi,et al.  A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation , 2018, MICCAI.

[268]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[269]  Eric Granger,et al.  Constrained‐CNN losses for weakly supervised segmentation☆ , 2018, Medical Image Anal..

[270]  Gabor Fichtinger,et al.  Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine , 2012, Medical Image Anal..

[271]  Pablo Irarrazaval,et al.  Simultaneous left and right ventricle segmentation using topology preserving level sets , 2017, Biomed. Signal Process. Control..

[272]  Ronald M. Summers,et al.  Computational Anatomy in the Abdomen: Automated Multi-Organ and Tumor Analysis from Computed Tomography , 2014 .

[273]  Daniel Rueckert,et al.  Canonical Correlation Analysis of Sub-cortical Brain Structures Using Non-rigid Registration , 2006, WBIR.

[274]  Nicholas Ayache,et al.  Principal Deformations Modes of Articulated Models for the Analysis of 3D Spine Deformities , 2008 .

[275]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[276]  Paul M. Thompson,et al.  Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort , 2015, NeuroImage: Clinical.

[277]  Chao Chen,et al.  Collaborative Multi Organ Segmentation by Integrating Deformable and Graphical Models , 2013, MICCAI.

[278]  Ben Glocker,et al.  Joint Classification-Regression Forests for Spatially Structured Multi-object Segmentation , 2012, ECCV.

[279]  Akinobu Shimizu,et al.  Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography , 2009, International Journal of Computer Assisted Radiology and Surgery.

[280]  Isabelle Bloch,et al.  Multi-organ localization with cascaded global-to-local regression and shape prior , 2015, Medical Image Anal..

[281]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[282]  Magnus Borga,et al.  Automatic and quantitative assessment of regional muscle volume by multi‐atlas segmentation using whole‐body water–fat MRI , 2015, Journal of magnetic resonance imaging : JMRI.

[283]  J. Marron,et al.  PCA CONSISTENCY IN HIGH DIMENSION, LOW SAMPLE SIZE CONTEXT , 2009, 0911.3827.

[284]  Ben Glocker,et al.  Small Organ Segmentation in Whole-body MRI using a Two-stage FCN and Weighting Schemes , 2018, MLMI@MICCAI.

[285]  Hidefumi Kobatake,et al.  Future CAD in multi-dimensional medical images: - Project on multi-organ, multi-disease CAD system - , 2007, Comput. Medical Imaging Graph..

[286]  Bram van Ginneken,et al.  Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database , 2006, Medical Image Anal..

[287]  Benoit M. Dawant,et al.  Automatic 3D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations , 1998, Medical Imaging.

[288]  Qiang Ji,et al.  Image Segmentation with a Unified Graphical Model , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[289]  Ronald M. Summers,et al.  Abdominal Multi-Organ Segmentation of CT Images Based on Hierarchical Spatial Modeling of Organ Interrelations , 2011, Abdominal Imaging.

[290]  Ben Glocker,et al.  Automated cardiovascular magnetic resonance image analysis with fully convolutional networks , 2017, Journal of Cardiovascular Magnetic Resonance.

[291]  Nico Karssemeijer,et al.  Multi-class Probabilistic Atlas-Based Segmentation Method in Breast MRI , 2011, IbPRIA.

[292]  Isabelle Bloch,et al.  Integrated multimedia electronic patient record and graph-based image information for cerebral tumors , 2008, Comput. Biol. Medicine.

[293]  Iasonas Kokkinos,et al.  Sub-cortical brain structure segmentation using F-CNN'S , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[294]  Xiao Han,et al.  Atlas-Based Auto-segmentation of Head and Neck CT Images , 2008, MICCAI.

[295]  Giovanni Montana,et al.  Deep neural networks for anatomical brain segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[296]  Mohammed Benjelloun,et al.  Multilevel statistical shape models: A new framework for modeling hierarchical structures , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[297]  W. Clem Karl,et al.  Coupled Shape Distribution-Based Segmentation of Multiple Objects , 2005, IPMI.

[298]  Daniel Rueckert,et al.  Automated Localization of Fetal Organs in MRI Using Random Forests with Steerable Features , 2015, MICCAI.

[299]  Örjan Smedby,et al.  Automatic Multi-organ Segmentation in Non-enhanced CT Datasets Using Hierarchical Shape Priors , 2014, 2014 22nd International Conference on Pattern Recognition.

[300]  Simon J. Doran,et al.  Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[301]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[302]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[303]  Vladimir Pekar,et al.  Assessment of a model-based deformable image registration approach for radiation therapy planning. , 2007, International journal of radiation oncology, biology, physics.

[304]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[305]  Örjan Smedby,et al.  Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors , 2014, ISBI 2014.

[306]  Jean-Baptiste Fasquel,et al.  An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge , 2006, Comput. Methods Programs Biomed..

[307]  Juan D'Amato,et al.  Multi-object segmentation framework using deformable models for medical imaging analysis , 2016, Medical & Biological Engineering & Computing.

[308]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[309]  J. Gilmore,et al.  Longitudinally guided level sets for consistent tissue segmentation of neonates , 2013, Human brain mapping.

[310]  Jun Ota,et al.  Identification of position and orientation of hand bones from MR images by bone model registration , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[311]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[312]  Simon K. Warfield,et al.  A Logarithmic Opinion Pool Based STAPLE Algorithm for the Fusion of Segmentations With Associated Reliability Weights , 2014, IEEE Transactions on Medical Imaging.

[313]  Antonio Criminisi,et al.  Regression forests for efficient anatomy detection and localization in computed tomography scans , 2013, Medical Image Anal..

[314]  Zhuowen Tu,et al.  Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[315]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[316]  Jim Graham,et al.  Automatic Generation of Statistical Pose and Shape Models for Articulated Joints , 2014, IEEE Transactions on Medical Imaging.

[317]  Mohammed Benjelloun,et al.  Fast 3D Spine Reconstruction of Postoperative Patients Using a Multilevel Statistical Model , 2012, MICCAI.

[318]  Cheng Huang,et al.  Fully Automatic Multi-Organ Segmentation Based on Multi-Boost Learning and Statistical Shape Model Search , 2015, VISCERAL Challenge@ISBI.

[319]  Alejandro F. Frangi,et al.  Cardiac Medial Modeling and Time-Course Heart Wall Thickness Analysis , 2008, MICCAI.

[320]  Torsten Rohlfing,et al.  Expectation Maximization Strategies for Multi-atlas Multi-label Segmentation , 2003, IPMI.

[321]  Lei Xing,et al.  Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models. , 2016, Medical physics.

[322]  Stuart Crozier,et al.  Fast automated segmentation of multiple objects via spatially weighted shape learning , 2016, Physics in medicine and biology.

[323]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[324]  Desire Sidibé,et al.  A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images , 2012, Comput. Methods Programs Biomed..

[325]  Ronald M. Summers,et al.  Analyses of Missing Organs in Abdominal Multi-Organ Segmentation , 2011, Abdominal Imaging.

[326]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[327]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[328]  Joachim Hornegger,et al.  Regression Forest-Based Organ Detection in Normalized PET Images , 2014, Bildverarbeitung für die Medizin.

[329]  Dinggang Shen,et al.  Machine Learning in Medical Imaging , 2012, Lecture Notes in Computer Science.

[330]  Konstantinos Kamnitsas,et al.  Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation , 2017, IEEE Transactions on Medical Imaging.

[331]  Hongkai Wang,et al.  Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images , 2012, IEEE Transactions on Medical Imaging.

[332]  Junjie Bai,et al.  Optimal Multiple Surface Segmentation With Shape and Context Priors , 2013, IEEE Transactions on Medical Imaging.

[333]  Surajit Ray,et al.  Statistics on Anatomic Objects Reflecting Inter-Object Relations , 2006 .

[334]  Marleen de Bruijne,et al.  Quantitative vertebral morphometry using neighbor-conditional shape models , 2007, Medical Image Anal..

[335]  Christopher Joseph Pal,et al.  3D segmentation of abdominal CT imagery with graphical models, conditional random fields and learning , 2013, Machine Vision and Applications.

[336]  P. Thomas Fletcher,et al.  Multi-scale 3-D Deformable Model Segmentation Based on Medial Description , 2001, IPMI.

[337]  Isabelle Bloch,et al.  Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI , 2005, Pattern Recognit. Lett..

[338]  Jean-Christophe Olivo-Marin,et al.  Coupled parametric active contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[339]  Hua Fang,et al.  A snake algorithm for automatically tracking multiple objects , 2011, 2011 18th IEEE International Conference on Image Processing.

[340]  Torsten Rohlfing,et al.  Extraction and Application of Expert Priors to Combine Multiple Segmentations of Human Brain Tissue , 2003, MICCAI.

[341]  Tobias Schwarz,et al.  Multiobject segmentation using coupled shape space models , 2010, Medical Imaging.

[342]  Ronald M. Summers,et al.  A multi-center milestone study of clinical vertebral CT segmentation , 2016, Comput. Medical Imaging Graph..

[343]  Kilian M. Pohl,et al.  Active Mean Fields: Solving the Mean Field Approximation in the Level Set Framework , 2007, IPMI.

[344]  Masahiro Oda,et al.  Organ Segmentation from 3D Abdominal CT Images Based on Atlas Selection and Graph Cut , 2011, Abdominal Imaging.

[345]  K. Brock,et al.  Accuracy of finite element model-based multi-organ deformable image registration. , 2005, Medical physics.

[346]  Yiqiang Zhan,et al.  Active Scheduling of Organ Detection and Segmentation in Whole-Body Medical Images , 2008, MICCAI.

[347]  安藤 広志,et al.  20世紀の名著名論:David Marr:Vision:a Computational Investigation into the Human Representation and Processing of Visual Information , 2005 .

[348]  Wenhan Luo,et al.  Multiple object tracking: A literature review , 2014, Artif. Intell..

[349]  Ronald M. Summers,et al.  Automatic multi-resolution shape modeling of multi-organ structures , 2015, Medical Image Anal..

[350]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[351]  R. Brand,et al.  Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. , 1976, The Journal of bone and joint surgery. American volume.

[352]  Lowell M Smoger,et al.  Statistical modeling to characterize relationships between knee anatomy and kinematics , 2015, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[353]  Hamid Soltanian-Zadeh,et al.  NONPARAMETRIC ENTROPY-BASED COUPLED MULTI-SHAPE MEDICAL IMAGE SEGMENTATION , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[354]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[355]  Tobias Gass,et al.  Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks , 2016, IEEE Transactions on Medical Imaging.

[356]  Feng Chen,et al.  Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets , 2016, International Journal of Computer Assisted Radiology and Surgery.

[357]  Dimitris N. Metaxas,et al.  Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images , 2011, IPMI.

[358]  Tao Zhang,et al.  Interactive graph cut based segmentation with shape priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[359]  Daniel Rueckert,et al.  Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.

[360]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[361]  Dewey Odhner,et al.  Rigid model-based 3D segmentation of the bones of joints in MR and CT images for motion analysis. , 2008, Medical physics.

[362]  Mariusz Bajger,et al.  3D Segmentation for Multi-Organs in CT Images , 2013 .

[363]  Pierre-Louis Bazin,et al.  Homeomorphic brain image segmentation with topological and statistical atlases , 2008, Medical Image Anal..

[364]  H. Blum Biological shape and visual science (part I) , 1973 .

[365]  Juan J. Cerrolaza,et al.  Multi-Shape-Hierarchical Active Shape Models , 2011 .

[366]  Shu Liao,et al.  Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition , 2016, IEEE Transactions on Medical Imaging.

[367]  Mert R. Sabuncu,et al.  Multi-atlas segmentation of biomedical images: A survey , 2014, Medical Image Anal..

[368]  Andreas K. Maier,et al.  A Feasibility Study of Automatic Multi-Organ Segmentation Using Probabilistic Atlas , 2017, Bildverarbeitung für die Medizin.

[369]  Tai Sing Lee,et al.  Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[370]  James S. Duncan,et al.  Neighbor-constrained segmentation with level set based 3-D deformable models , 2004, IEEE Transactions on Medical Imaging.

[371]  Gerald Q. Maguire,et al.  Evaluation of a segmentation procedure to delineate organs for use in construction of a radiation therapy planning atlas , 2003, Int. J. Medical Informatics.