Hyperchaos in a Modified Canonical Chua's Circuit

In this paper, we present the hyperchaos dynamics of a modified canonical Chua's electrical circuit. This circuit, which is capable of realizing the behavior of every member of the Chua's family, consists of just five linear elements (resistors, inductors and capacitors), a negative conductor and a piecewise linear resistor. The route followed is a transition from regular behavior to chaos and then to hyperchaos through border-collision bifurcation, as the system parameter is varied. The hyperchaos dynamics, characterized by two positive Lyapunov exponents, is described by a set of four coupled first-order ordinary differential equations. This has been investigated extensively using laboratory experiments, Pspice simulation and numerical analysis.

[1]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[2]  A. Tamasevicius,et al.  Simple 4D chaotic oscillator , 1996 .

[3]  Leon O. Chua,et al.  Intermittency in a piecewise-linear circuit , 1991 .

[4]  K. Kaneko Doubling of Torus , 1983 .

[5]  A. Cenys,et al.  Hyperchaotic oscillator with gyrators , 1997 .

[6]  Leon O. Chua,et al.  The double scroll , 1985 .

[7]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[8]  Anagnostopoulos,et al.  Crisis-induced intermittency in a third-order electrical circuit. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  O. Rössler An equation for hyperchaos , 1979 .

[10]  Kapitaniak,et al.  Chaos-hyperchaos transition , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  A. Tamasevicius,et al.  Hyperchaos in Dynamical Systems with a Monoactive Degree of Freedom , 1998 .

[12]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .

[13]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[14]  Ioannis M. Kyprianidis,et al.  Antimonotonicity and Chaotic Dynamics in a Fourth-Order Autonomous nonlinear Electric Circuit , 2000, Int. J. Bifurc. Chaos.

[15]  Toshimichi Saito The dead-zone conductor hyperchaos generator , 1990 .

[16]  Celso Grebogi,et al.  Erratum: Border collision bifurcations in two-dimensional piecewise smooth maps [Phys. Rev. E59, 4052 (1999)] , 1999 .

[17]  L. Chua,et al.  Experimental hyperchaos in coupled Chua's circuits , 1994 .

[18]  C. Wu,et al.  Studying chaos via 1-D maps-a tutorial , 1993 .

[19]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  A. Tamasevicius,et al.  Driving nonlinear resonator with hyperchaotic signals , 1996 .

[22]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[23]  Toshimichi Saito,et al.  A four-dimensional plus hysteresis chaos generator , 1994 .

[24]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[25]  Joachim Peinke,et al.  A p-Ge semiconductor experiment showing chaos and hyperchaos , 1989 .

[26]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.