Origins of structural hole traps in hydrogenated amorphous silicon.

The inherently disordered nature of hydrogenated amorphous silicon (a-Si:H) obscures the influence of atomic features on the trapping of holes. To address this, we have created a set of over two thousand ab initio structures of a-Si:H and explored the influence of geometric factors on the occurrence of deep hole traps using density-functional theory. Statistical analysis of the relative contribution of various structures to the trap distribution shows that floating bonds and ionization-induced displacements correlate most strongly with hole traps in our ensemble.

[1]  Kazuo Morigaki,et al.  Hydrogenated Amorphous Silicon , 2014 .

[2]  Jeffrey C. Grossman,et al.  Structural origins of intrinsic stress in amorphous silicon thin films , 2012 .

[3]  T. Searle,et al.  Properties of Amorphous Silicon and its Alloys , 2011 .

[4]  A. Curioni,et al.  Large-scale simulations of a-Si:H: the origin of midgap states revisited. , 2011, Physical review letters.

[5]  David Alan Drabold Silicon: the gulf between crystalline and amorphous , 2011 .

[6]  J. Farjas,et al.  The configurational energy gap between amorphous and crystalline silicon , 2011 .

[7]  David Alan Drabold,et al.  Urbach tails of amorphous silicon , 2011 .

[8]  J. Grossman,et al.  Microscopic description of light induced defects in amorphous silicon solar cells. , 2008, Physical review letters.

[9]  S. Wagner,et al.  Electrical response to uniaxial tensile strain of a-Si:H TFTs fabricated on polyimide foils , 2008 .

[10]  David Alan Drabold,et al.  Atomistic origin of urbach tails in amorphous silicon. , 2008, Physical review letters.

[11]  E. Schiff Hole Mobilities and the Physics of Amorphous Silicon Solar Cells , 2006 .

[12]  S. Guha,et al.  Hole-mobility limit of amorphous silicon solar cells , 2006 .

[13]  Sigurd Wagner,et al.  Field-effect mobility of amorphous silicon thin-film transistors under strain , 2004 .

[14]  Hellmut Fritzsche,et al.  Development in Understanding and Controlling the Staebler-Wronski Effect in a-Si:H , 2001 .

[15]  H. Branz Hydrogen diffusion and mobile hydrogen in amorphous silicon , 1999 .

[16]  J. L. Robertson,et al.  High Resolution Radial Distribution Function of Pure Amorphous Silicon , 1999 .

[17]  Pier Luigi Silvestrelli,et al.  Maximally localized Wannier functions for simulations with supercells of general symmetry , 1999 .

[18]  H. Branz HYDROGEN COLLISION MODEL : QUANTITATIVE DESCRIPTION OF METASTABILITY IN AMORPHOUS SILICON , 1999 .

[19]  R. Resta,et al.  Electron Localization in the Insulating State , 1998, cond-mat/9808151.

[20]  R. Biswas,et al.  Dangling-bond levels and structure relaxation in hydrogenated amorphous silicon , 1997 .

[21]  D. Carlson,et al.  The reversal of light-induced degradation in amorphous silicon solar cells by an electric field , 1997 .

[22]  Schiff,et al.  Dangling-bond relaxation and deep-level measurements in hydrogenated amorphous silicon. , 1993, Physical review. B, Condensed matter.

[23]  H. Antoniadis,et al.  Electron drift mobility measurements on annealed and light‐soaked hydrogenated amorphous silicon , 1992 .

[24]  Isaac Balberg,et al.  Deposition of device quality, low H content amorphous silicon , 1991 .

[25]  Schiff,et al.  Hydrogen and defects in amorphous silicon. , 1991, Physical review letters.

[26]  Biegelsen,et al.  Microscopic nature of coordination defects in amorphous silicon. , 1989, Physical review. B, Condensed matter.

[27]  Stathis Analysis of the superhyperfine structure and the g tensor of defects in amorphous silicon. , 1989, Physical review. B, Condensed matter.

[28]  Biegelsen,et al.  Dangling or floating bonds in amorphous silicon? , 1988, Physical review letters.

[29]  Pantelides,et al.  Quantitative analysis of EPR and electron-nuclear double resonance spectra of D centers in amorphous silicon: Dangling versus floating bonds. , 1988, Physical review. B, Condensed matter.

[30]  S. Pantelides Gap states in amorphous silicon—dangling and floating bonds , 1987 .

[31]  Wagner,et al.  Band tails, entropy, and equilibrium defects in hydrogenated amorphous silicon. , 1987, Physical review letters.

[32]  Pantelides Defects in amorphous silicon: A new perspective. , 1986, Physical review letters.

[33]  K. Shirakawa,et al.  Dangling Bond Creation in Hydrogenated Amorphous Silicon by Light-Soaking , 1986 .

[34]  Kakalios,et al.  Thermal equilibration in doped amorphous silicon. , 1986, Physical review. B, Condensed matter.

[35]  Joannopoulos,et al.  Dangling bond in a-Si:H. , 1986, Physical review letters.

[36]  Biegelsen,et al.  Hyperfine studies of dangling bonds in amorphous silicon. , 1986, Physical review. B, Condensed matter.

[37]  Y. Inuishi,et al.  Effect of Substrate Temperature on Properties of Glow-Discharged Hydrogenated Amorphous Silicon , 1984 .

[38]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[39]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[40]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[41]  W. Howells,et al.  The structure of amorphous Si:H using steady state and pulsed neutron sources , 1989 .