Reversible solvatomagnetic switching in a single-ion magnet from an entatic state† †Electronic supplementary information (ESI) available: Preparation methods and physical characterization data. Crystallographic refinement and computational details. Additional figures (Fig. S1–S12) and tables (Tables

We have developed a new strategy for the design and synthesis of multifunctional molecular materials showing reversible magnetic and optical switching.

[1]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Radonovich,et al.  Synthesis and structure of a 17 electron tetrahedral cobalt complex, bis(2,2'-biquinolyl)cobalt: reactions of a new cobalt/pyrrolyl synthetic intermediate , 1989 .

[3]  O. Kahn,et al.  HYSTERESIS FOR NONINTERACTING MOLECULES , 1991 .

[4]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[5]  J. Čejka,et al.  Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11 , 2000 .

[6]  Santiago Alvarez,et al.  Continuous symmetry measures of penta-coordinate molecules: Berry and non-Berry distortions of the trigonal bipyramid , 2000 .

[7]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[8]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[9]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[10]  S. Koshihara,et al.  Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level , 2004 .

[11]  Pere Alemany,et al.  Mapping the stereochemistry and symmetry of tetracoordinate transition-metal complexes. , 2004, Chemistry.

[12]  S. L. Mayo,et al.  Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin , 2007, Proceedings of the National Academy of Sciences.

[13]  Joan Cano,et al.  Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application , 2008 .

[14]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[15]  Frank Neese,et al.  How to build molecules with large magnetic anisotropy. , 2009, Chemistry.

[16]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[17]  Jeremiah A. Johnson,et al.  A magnetic switch for spin-catalyzed interconversion of nuclear spin isomers. , 2010, Journal of the American Chemical Society.

[18]  J. Long,et al.  Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2010, Journal of the American Chemical Society.

[19]  M. Affronte,et al.  Molecular spins for quantum information technologies. , 2011, Chemical Society reviews.

[20]  A. Powell,et al.  High-spin cyclopentadienyl complexes: a single-molecule magnet based on the aryl-iron(II) cyclopentadienyl type. , 2011, Chemistry.

[21]  T. Jurca,et al.  Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. , 2011, Journal of the American Chemical Society.

[22]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-. , 2011, Journal of the American Chemical Society.

[23]  A. Dei,et al.  Molecular (nano) magnets as test grounds of quantum mechanics. , 2011, Angewandte Chemie.

[24]  J. Pasán,et al.  Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(II) anthracenophane. , 2011, Chemical communications.

[25]  R. Caciuffo,et al.  Magnetic memory effect in a transuranic mononuclear complex. , 2011, Angewandte Chemie.

[26]  W. Wernsdorfer,et al.  Field-induced slow magnetic relaxation in a six-coordinate mononuclear cobalt(II) complex with a positive anisotropy. , 2012, Journal of the American Chemical Society.

[27]  Anirban Misra,et al.  Ligand effects toward the modulation of magnetic anisotropy and design of magnetic systems with desired anisotropy characteristics. , 2012, The journal of physical chemistry. A.

[28]  Christopher J. Chang,et al.  Slow magnetic relaxation in a pseudotetrahedral cobalt(II) complex with easy-plane anisotropy. , 2012, Chemical communications.

[29]  J. Pasán,et al.  Redox switching of the antiferromagnetic coupling in permethylated dicopper(II) paracyclophanes. , 2012, Chemical communications.

[30]  F. Lloret,et al.  Highly anisotropic rhenium(IV) complexes: new examples of mononuclear single-molecule magnets. , 2013, Journal of the American Chemical Society.

[31]  W. Wernsdorfer,et al.  Field-induced hysteresis and quantum tunneling of the magnetization in a mononuclear manganese(III) complex. , 2013, Angewandte Chemie.

[32]  W. Wernsdorfer,et al.  Slow magnetic relaxation in a Co(II)-Y(III) single-ion magnet with positive axial zero-field splitting. , 2013, Angewandte Chemie.

[33]  Andrés G. Algarra,et al.  Synthesis, electronic structure, and magnetism of [Ni(6-Mes)2]+: a two-coordinate nickel(I) complex stabilized by bulky N-heterocyclic carbenes. , 2013, Journal of the American Chemical Society.

[34]  Joseph M. Zadrozny,et al.  Slow magnetization dynamics in a series of two-coordinate iron(II) complexes , 2013 .

[35]  Song Gao,et al.  Zero-field slow magnetic relaxation from single Co(II) ion: a transition metal single-molecule magnet with high anisotropy barrier , 2013 .

[36]  R. Crabtree,et al.  Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. , 2013, Angewandte Chemie.

[37]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[38]  Dietmar Stalke,et al.  Electronic structure and slow magnetic relaxation of low-coordinate cyclic alkyl(amino) carbene stabilized iron(I) complexes. , 2014, Journal of the American Chemical Society.

[39]  J. Grossman,et al.  Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. , 2014, Nature chemistry.

[40]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[41]  E. Cremades,et al.  Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy , 2014, Nature Communications.

[42]  A. Barra,et al.  [ReF(6)](2-) : a robust module for the design of molecule-based magnetic materials. , 2014, Angewandte Chemie.

[43]  R. Clérac,et al.  Switching off the single-molecule magnet properties of the [CoII(Me6tren)(OH2)]2+ module by complexation with trans-[RuIII(salen)(CN)2]− , 2014 .

[44]  Alexander Hoffmann,et al.  Catching an entatic state--a pair of copper complexes. , 2014, Angewandte Chemie.

[45]  R. Boča,et al.  A mononuclear Ni(ii) complex: a field induced single-molecule magnet showing two slow relaxation processes. , 2015, Dalton transactions.

[46]  M. Murrie,et al.  3d single-ion magnets. , 2015, Chemical Society reviews.

[47]  A. Pavlov,et al.  A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. , 2015, Journal of the American Chemical Society.

[48]  W. Wernsdorfer,et al.  Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)-Porphyrin Complex. , 2015, Chemistry.

[49]  J. Gascón,et al.  Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties. , 2016, Chemistry.

[50]  M. Drew,et al.  Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization. , 2016, Inorganic chemistry.