Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data

[1]  Milap Punia,et al.  Comparison of MODIS derived land use and land cover with Ministry of Agriculture reported statistics for India , 2013 .

[2]  Ruth S. DeFries,et al.  Estimation of tree cover using MODIS data at global, continental and regional/local scales , 2005 .

[3]  Stuart E. Marsh,et al.  Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling , 2013, Remote. Sens..

[4]  Dirk Pflugmacher,et al.  Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Janne Heiskanen,et al.  Evaluation of global land cover data sets over the tundra–taiga transition zone in northernmost Finland , 2008 .

[6]  M. Makhdoum,et al.  Management of protected areas and conservation of biodiversity in Iran , 2008 .

[7]  Terry L. Pavlis,et al.  Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA , 2011 .

[8]  Ahmed Barakat,et al.  Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data , 2018 .

[9]  Mansour Aliabadian,et al.  The roles of environmental factors on reptile richness in Iran , 2014 .

[10]  Rudolf Liedl,et al.  Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data , 2015, Journal of Geographical Sciences.

[11]  Ann P. El-Moslimany Ecology and late-Quaternary history of the Kurdo-Zagrosian oak forest near Lake Zeribar, western Iran , 1986, Vegetatio.

[12]  Jorge M. Palmeirim,et al.  Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour , 2004 .

[13]  Clement Atzberger,et al.  First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe , 2016, Remote. Sens..

[14]  Azita Farashi,et al.  Identifying biodiversity hotspots for threatened mammal species in Iran , 2017 .

[15]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[16]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[17]  Shailesh Nayak,et al.  Land use/land cover changes near HAzira Region, Gujarat using remote sensing satellite data , 2005 .

[18]  Valerio Baiocchi,et al.  Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy , 2016, Int. J. Digit. Earth.

[19]  Cristina Branquinho,et al.  Tracking tree canopy cover changes in space and time in High Nature Value Farmland to prioritize reforestation efforts , 2018 .

[20]  P. Wężyk,et al.  Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2 , 2018 .

[21]  René Landry,et al.  Assessing horizontal positional accuracy of Google Earth imagery in the city of Montreal, Canada , 2017 .

[22]  Martti Hallikainen,et al.  Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data , 2004 .

[23]  Samuel Corgne,et al.  Markov chains–cellular automata modeling and multicriteria analysis of land cover change in the Lower Nhecolândia subregion of the Brazilian Pantanal wetland , 2016 .

[24]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[25]  Christopher Conrad,et al.  Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. , 2013 .

[26]  David T. Potere,et al.  Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive , 2008, Sensors.

[27]  L Khodakarami,et al.  Forest losses and gains in Kurdistan province, western Iran: Where do we stand? , 2017 .

[28]  Heather Reese,et al.  Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest , 2015, Remote. Sens..

[29]  Richard Tay,et al.  Support vector machines for urban growth modeling , 2010, GeoInformatica.

[30]  Bogdan Zagajewski,et al.  Application of Sentinel-2 and EnMAP new satellite data to the mapping of alpine vegetation of the Karkonosze Mountains , 2017 .

[31]  Mario Cools,et al.  Comparing support vector machines with logistic regression for calibrating cellular automata land use change models , 2018 .

[32]  S. Nandy,et al.  Forest cover dynamics analysis and prediction modeling using logistic regression model , 2014 .

[33]  Manoj K. Arora,et al.  Land Cover Classification Using IRS LISS III Image and DEM in a Rugged Terrain: A Case Study in Himalayas , 2005 .

[34]  Yang Shao,et al.  Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points , 2012 .

[35]  R. Dwivedi,et al.  Textural analysis of IRS-1D panchromatic data for land cover classification , 2002 .

[36]  Paweł Hawryło,et al.  Using of Sentinel-2 images for automation of the forest succession detection , 2018 .

[37]  G. Çakir,et al.  Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey , 2008, Environmental monitoring and assessment.

[38]  L. Chasmer,et al.  Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance. , 2018, The Science of the total environment.

[39]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[40]  Onisimo Mutanga,et al.  Estimating tree species diversity in the savannah using NDVI and woody canopy cover , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Olga V. Brovkina,et al.  Composite indicator for monitoring of Norway spruce stand decline , 2017 .

[42]  Jun Zhao,et al.  Estimating Forest Canopy Cover in Black Locust (Robinia pseudoacacia L.) Plantations on the Loess Plateau Using Random Forest , 2018, Forests.

[43]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[44]  Birgit Kleinschmit,et al.  Sensitivity analysis of RapidEye spectral bands and derived vegetation indices for insect defoliation detection in pure Scots pine stands , 2017 .

[45]  Bing Li,et al.  Land subsidence in Tianjin for 2015 to 2016 revealed by the analysis of Sentinel-1A with SBAS-InSAR , 2017 .

[46]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[47]  Ashraf Farah,et al.  Positional Accuracy Assessment of Googleearth in Riyadh , 2014 .

[48]  J. Carreiras,et al.  Estimation of tree canopy cover in evergreen oak woodlands using remote sensing , 2006 .

[49]  Mohd Zubir Mat Jafri,et al.  Comparison of Neural Network and Maximum Likelihood Approaches in Image Classification , 2010 .

[50]  Xuehong Chen,et al.  Global cultivated land mapping at 30 m spatial resolution , 2016, Science China Earth Sciences.

[51]  H. Wright,et al.  Preliminary Pollen Studies at Lake Zeribar, Zagros Mountains, Southwestern Iran , 1963, Science.