Flexible solid-state supercapacitors: design, fabrication and applications

Increasing power and energy demands for next-generation portable and flexible electronics such as roll-up displays, photovoltaic cells, and wearable devices have stimulated intensive efforts to explore flexible, lightweight and environmentally friendly energy storage devices. Flexible solid-state supercapacitors (SCs) have attracted increasing interest because they can provide substantially higher specific/volumetric energy density compared to conventional capacitors. Additionally, flexible solid-state SCs are typically small in size, highly reliable, light-weight, easy to handle, and have a wide range of operation temperatures. In this regard, solid-state SCs hold great promise as new energy storage devices for flexible and wearable electronics. In this article, we review recent achievements in the design, fabrication and characterization of flexible solid-state SCs. Moreover, we also discuss the current challenges and future opportunities for the development of high-performance flexible solid-state SCs.

[1]  Punya A. Basnayaka,et al.  Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor , 2011 .

[2]  Fei Xiao,et al.  Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. , 2012, ACS applied materials & interfaces.

[3]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[4]  Meihua Jin,et al.  High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self‐Standing Carbon‐Nanofiber Paper , 2011 .

[5]  Xinliang Feng,et al.  2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors , 2011, Advanced materials.

[6]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[7]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[8]  Xiaodong Chen,et al.  Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors. , 2012, Small.

[9]  Xinhua Li,et al.  Flexible supercapacitor based on MnO2 nanoparticles via electrospinning , 2013 .

[10]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[11]  Zheng Hu,et al.  Carbon Nanocages as Supercapacitor Electrode Materials , 2012, Advanced materials.

[12]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[13]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[14]  Jean-François Fauvarque,et al.  Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO) , 2000 .

[15]  Teng Zhai,et al.  Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices , 2013 .

[16]  Emmanuel P. Giannelis,et al.  A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica , 2012 .

[17]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[18]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[19]  Paul G. Rasmussen,et al.  Charge storage on nanostructured early transition metal nitrides and carbides , 2012 .

[20]  P. Sivaraman,et al.  Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte , 2006 .

[21]  Yexiang Tong,et al.  ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[22]  Norio Miura,et al.  High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline , 2006 .

[23]  Grzegorz Lota,et al.  Novel insight into neutral medium as electrolyte for high-voltage supercapacitors , 2012 .

[24]  Byeong-Su Kim,et al.  Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. , 2010, ACS nano.

[25]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[26]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[27]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[28]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[29]  Andrzej Lewandowski,et al.  Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte , 2001 .

[30]  X. Lou,et al.  General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High‐Performance Electrodes for Supercapacitors , 2013, Advanced materials.

[31]  Zhixiang Wei,et al.  Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites , 2011 .

[32]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[33]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[34]  Nae-Lih Wu,et al.  Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte , 2008 .

[35]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[36]  Jie Liu,et al.  Carbon Nanomaterials for Flexible Energy Storage , 2013 .

[37]  Qiang Liu,et al.  Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes , 2010 .

[38]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[39]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[40]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[41]  B. Mathiesen,et al.  100% Renewable energy systems, climate mitigation and economic growth , 2011 .

[42]  Zan Gao,et al.  Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor , 2014 .

[43]  Masaki Yamagata,et al.  An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor , 2009 .

[44]  Yexiang Tong,et al.  Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices , 2012 .

[45]  Songtao Lu,et al.  Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. , 2013, Nanoscale.

[46]  Li-Zhen Fan,et al.  High-performance polypyrrole electrode materials for redox supercapacitors , 2006 .

[47]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[48]  A. K. Akella,et al.  Social, economical and environmental impacts of renewable energy systems , 2009 .

[49]  N. Pan,et al.  High power density supercapacitors using locally aligned carbon nanotube electrodes , 2005 .

[50]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[51]  Shu Wang,et al.  DNA-Templated Synthesis of Cationic Poly(3,4-ethylenedioxythiophene) Derivative for Supercapacitor Electrodes. , 2010, Macromolecular rapid communications.

[52]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[53]  Yexiang Tong,et al.  Controllable synthesis of ZnO-based core/shell nanorods and core/shell nanotubes , 2011 .

[54]  Robert Vajtai,et al.  Ultrathick Freestanding Aligned Carbon Nanotube Films , 2007 .

[55]  Keryn Lian,et al.  High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes , 2011 .

[56]  Bo-Yeong Kim,et al.  All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. , 2012, ACS nano.

[57]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[58]  Teng Zhai,et al.  TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors , 2013 .

[59]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[60]  Hyuk‐Jun Kwon,et al.  Low‐Power Flexible Organic Light‐Emitting Diode Display Device , 2011, Advanced materials.

[61]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[62]  Byungwoo Kim,et al.  Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers , 2010 .

[63]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[64]  Teng Zhai,et al.  Solid‐State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability , 2014, Advanced materials.

[65]  Jinlong Yang,et al.  Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. , 2011, Journal of the American Chemical Society.

[66]  Shi Xue Dou,et al.  Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors , 2008 .

[67]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[68]  Masayuki Morita,et al.  Electric double layer capacitors with new gel electrolytes , 1995 .

[69]  John P. Ferraris,et al.  Vanadium Oxide Nanowire–Carbon Nanotube Binder‐Free Flexible Electrodes for Supercapacitors , 2011 .

[70]  Jun Chen,et al.  Compact-designed supercapacitors using free-standing single-walled carbon nanotube films , 2011 .

[71]  S. S. Sekhon Conductivity behaviour of polymer gel electrolytes: Role of polymer , 2003 .

[72]  Byron D. Gates Flexible Electronics , 2009, Science.

[73]  J. Holdren,et al.  Energy and Sustainability , 2007, Science.

[74]  Yuanlong Shao,et al.  High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes , 2013 .

[75]  Songtao Lu,et al.  Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. , 2012, Nano letters.

[76]  Xiaodong Chen,et al.  Highly Stretchable, Integrated Supercapacitors Based on Single‐Walled Carbon Nanotube Films with Continuous Reticulate Architecture , 2013, Advanced materials.

[77]  Ran Liu,et al.  Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. , 2012, Physical chemistry chemical physics : PCCP.

[78]  Feijun Wang,et al.  Cellulose nanofiber–graphene all solid-state flexible supercapacitors , 2013 .

[79]  Don-Hyung Ha,et al.  Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black. , 2012, Nano letters.

[80]  Yun Suk Huh,et al.  High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. , 2012, Nanoscale.

[81]  Bo Pei,et al.  Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors , 2013 .

[82]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[83]  Wako Naoi,et al.  New generation "nanohybrid supercapacitor". , 2013, Accounts of chemical research.

[84]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[85]  Angeliki N. Menegaki,et al.  A social marketing mix for renewable energy in Europe based on consumer stated preference surveys , 2012 .

[86]  Junwu Zhu,et al.  Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High‐Performance Supercapacitors , 2011, Advanced materials.

[87]  S. Pitchumani,et al.  A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors , 2006 .

[88]  Byung Chul Kim,et al.  Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber , 2010 .

[89]  Charles P. Marsh,et al.  Potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors , 2012 .

[90]  Q. Xue,et al.  Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets , 2012 .

[91]  Chun–Chen Yang,et al.  All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes , 2005 .

[92]  Hui Dou,et al.  Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors , 2012 .

[93]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[94]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[95]  Ziqi Tan,et al.  Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes , 2013 .

[96]  Heeyeop Chae,et al.  A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes , 2010, Nanotechnology.

[97]  Teng Zhai,et al.  Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors , 2013 .

[98]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[99]  Wang Zilong,et al.  High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide , 2014 .

[100]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[101]  Min Wei,et al.  Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. , 2013, Small.

[102]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[103]  Bruno Scrosati,et al.  Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries , 2012 .

[104]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[105]  Xingbin Yan,et al.  Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. , 2011, Nanoscale.

[106]  Noel W. Duffy,et al.  The nickel–carbon asymmetric supercapacitor—Performance, energy density and electrode mass ratios , 2008 .

[107]  Q. Xue,et al.  Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. , 2010, ACS applied materials & interfaces.

[108]  Zhang Lan,et al.  A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor , 2012 .

[109]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[110]  Hsisheng Teng,et al.  Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors , 2012 .

[111]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[112]  Jiaoyang Li,et al.  Flexible Hybrid Paper Made of Monolayer Co3O4 Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors , 2012 .

[113]  Michaël Deschamps,et al.  Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. , 2013, Nature materials.

[114]  Jian Jiang,et al.  Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications , 2012 .

[115]  Keryn Lian,et al.  Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors , 2012 .

[116]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[117]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[118]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[119]  Srinivasan Sampath,et al.  Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors , 2007 .

[120]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[121]  Xu Xiao,et al.  WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All‐Solid‐State Asymmetric Supercapacitors , 2012 .

[122]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[123]  Weiguo Song,et al.  Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. , 2011, Nanoscale.

[124]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[125]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[126]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[127]  Teng Zhai,et al.  LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. , 2012, ACS nano.

[128]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[129]  Pulickel M. Ajayan,et al.  Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources , 2010 .

[130]  Zhenbo Cai,et al.  Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor , 2013, Scientific Reports.

[131]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[132]  Paula T Hammond,et al.  Facilitated ion transport in all-solid-state flexible supercapacitors. , 2011, ACS nano.

[133]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[134]  Tengfei Zhang,et al.  A High‐Performance Graphene Oxide‐Doped Ion Gel as Gel Polymer Electrolyte for All‐Solid‐State Supercapacitor Applications , 2013 .

[135]  L. Qu,et al.  Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. , 2013, Nanoscale.

[136]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[137]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[138]  Feng Luan,et al.  High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. , 2013, Nanoscale.

[139]  Yuyuan Tian,et al.  Measurement of the quantum capacitance of graphene. , 2009, Nature nanotechnology.

[140]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[141]  Ning Zhang,et al.  Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance , 2013 .

[142]  Xin Li,et al.  Supercapacitors based on nanostructured carbon , 2013 .

[143]  C.C. Yang,et al.  Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries , 2003 .

[144]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[145]  Hua Zhao,et al.  Flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor , 2011 .

[146]  Nerilso Bocchi,et al.  Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes , 2013 .

[147]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[148]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[149]  J. Siirola,et al.  The Global Energy Landscape and Materials Innovation , 2008 .

[150]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[151]  Hiroshi Inoue,et al.  Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte , 2004 .

[152]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[153]  Zhongwei Chen,et al.  Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films , 2011 .

[154]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[155]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[156]  Fan Zhang,et al.  Preventing Graphene Sheets from Restacking for High-Capacitance Performance , 2011 .

[157]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[158]  Hiroshi Inoue,et al.  New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte , 2003 .

[159]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[160]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[161]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[162]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[163]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[164]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[165]  R. Ruoff,et al.  Reduced graphene oxide by chemical graphitization. , 2010, Nature communications.

[166]  Qingwen Li,et al.  Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. , 2013, ACS applied materials & interfaces.

[167]  Catia Arbizzani,et al.  Lithium‐ion Batteries and Supercapacitors for Use in Hybrid Electric Vehicles , 2013 .

[168]  Bo Gao,et al.  A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors , 2011 .

[169]  Yongyao Xia,et al.  An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes , 2005 .

[170]  Yu Huang,et al.  Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. , 2013, ACS nano.