Gravitational collider physics

We study the imprints of new ultralight particles on the gravitational-wave signals emitted by binary black holes. Superradiant instabilities may create large clouds of scalar or vector fields around rotating black holes. The presence of a binary companion then induces transitions between different states of the cloud, which become resonantly enhanced when the orbital frequency matches the energy gap between the states. We find that the time dependence of the orbit significantly impacts the cloud’s dynamics during a transition. Following an analogy with particle colliders, we introduce an S-matrix formalism to describe the evolution through multiple resonances. We show that the state of the cloud, as it approaches the merger, carries vital information about its spectrum via time-dependent finite-size effects. Moreover, due to the transfer of energy and angular momentum between the cloud and the orbit, a dephasing of the gravitational-wave signal can occur, which is correlated with the positions of the resonances. Notably, for intermediate and extreme mass ratio inspirals, long-lived floating orbits are possible, as well as kicks that yield large eccentricities. Observing these effects, through the precise reconstruction of waveforms, has the potential to unravel the internal structure of the boson clouds, ultimately probing the masses and spins of new particles.

[1]  D. Baumann,et al.  The cosmological bootstrap: weight-shifting operators and scalar seeds , 2019, Journal of High Energy Physics.

[2]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[3]  W. East,et al.  Gravitational wave signatures of ultralight vector bosons from black hole superradiance , 2019, Physical Review D.

[4]  John Stout,et al.  The spectra of gravitational atoms , 2019, Journal of Cosmology and Astroparticle Physics.

[5]  Huan Yang,et al.  Dynamic signatures of black hole binaries with superradiant clouds , 2019, Physical Review D.

[6]  G. Bertone,et al.  Gravitational wave probes of dark matter: challenges and opportunities , 2019, SciPost Physics Core.

[7]  E. Berti,et al.  Ultralight boson cloud depletion in binary systems , 2019, Physical Review D.

[8]  S. Nissanke,et al.  Multimessenger Universe with Gravitational Waves from Binaries , 2019, 1903.09277.

[9]  C. Broeck,et al.  Extreme Gravity and Fundamental Physics , 2019 .

[10]  P. Pani,et al.  Impact of multiple modes on the black-hole superradiant instability , 2018, Physical Review D.

[11]  N. Arkani-Hamed,et al.  The cosmological bootstrap: inflationary correlators from symmetries and singularities , 2018, Journal of High Energy Physics.

[12]  Huan Yang,et al.  Gravitational floating orbits around hairy black holes , 2018, Physical Review D.

[13]  Liam McAllister,et al.  The Kreuzer-Skarke axiverse , 2018, Journal of High Energy Physics.

[14]  W. East Massive Boson Superradiant Instability of Black Holes: Nonlinear Growth, Saturation, and Gravitational Radiation. , 2018, Physical review letters.

[15]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[16]  S. Dolan Instability of the Proca field on Kerr spacetime , 2018, Physical Review D.

[17]  D. Baumann,et al.  Probing ultralight bosons with binary black holes , 2018, Physical Review D.

[18]  V. Cardoso,et al.  Constraining the mass of dark photons and axion-like particles through black-hole superradiance , 2018, 1801.01420.

[19]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[20]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[21]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[22]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[23]  E. Berti,et al.  Gravitational wave searches for ultralight bosons with LIGO and LISA , 2017, 1706.06311.

[24]  E. Berti,et al.  Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. , 2017, Physical review letters.

[25]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[26]  W. East Superradiant instability of massive vector fields around spinning black holes in the relativistic regime , 2017, 1705.01544.

[27]  A. Buonanno,et al.  Distinguishing Boson Stars from Black Holes and Neutron Stars from Tidal Interactions in Inspiraling Binary Systems , 2017, 1704.08651.

[28]  R. Lasenby,et al.  Black hole superradiance signatures of ultralight vectors , 2017, 1704.05081.

[29]  F. Pretorius,et al.  Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes. , 2017, Physical review letters.

[30]  Rafael A. Porto The Music of the Spheres: The Dawn of Gravitational Wave Science , 2017, 1703.06440.

[31]  I. Rothstein,et al.  Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations , 2016, 1609.08268.

[32]  S. Endlich,et al.  A modern approach to superradiance , 2016, 1609.06723.

[33]  Rafael A. Porto The tune of love and the nature(ness) of spacetime , 2016, 1606.08895.

[34]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[35]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[36]  S. Dimopoulos,et al.  Black Hole Mergers and the QCD Axion at Advanced LIGO , 2016, 1604.03958.

[37]  M. Bizouard Observation of Gravitational Waves from a Binary Black Hole Merger by the LIGO Scientific Collaboration and the Virgo Collaboration , 2016 .

[38]  Rafael A. Porto The Effective Field Theorist's Approach to Gravitational Dynamics , 2016, 1601.04914.

[39]  Juan Maldacena,et al.  Cosmological Collider Physics , 2015, 1503.08043.

[40]  V. Cardoso,et al.  Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics , 2015, 1501.06570.

[41]  A. Arvanitaki,et al.  Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.

[42]  V. Cardoso,et al.  Black holes as particle detectors: evolution of superradiant instabilities , 2014, 1411.0686.

[43]  V. Cardoso,et al.  Black holes and fundamental fields in numerical relativity: Initial data construction and evolution of bound states , 2014, 1401.1548.

[44]  H. Kodama,et al.  Gravitational radiation from an axion cloud around a black hole: Superradiant phase , 2013, 1312.2326.

[45]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[46]  G. Mueller,et al.  Dark Sectors and New, Light, Weakly-Coupled Particles , 2013, 1311.0029.

[47]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2013, Living reviews in relativity.

[48]  D. Green,et al.  On squeezed limits in single-field inflation. Part I , 2013, 1303.1430.

[49]  S. Dolan Superradiant instabilities of rotating black holes in the time domain , 2012, 1212.1477.

[50]  V. Cardoso,et al.  Superradiant instabilities in astrophysical systems , 2012, 1212.0551.

[51]  Masahide Yamaguchi,et al.  Effective field theory approach to quasi-single field inflation and effects of heavy fields , 2012, 1211.1624.

[52]  E. Berti,et al.  Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric , 2012, 1209.0773.

[53]  E. Berti,et al.  Black-hole bombs and photon-mass bounds. , 2012, Physical review letters.

[54]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[55]  A. Trzupek,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012, 1207.7214.

[56]  H. Kodama,et al.  Bosenova Collapse of Axion Cloud around a Rotating Black Hole , 2012, 1203.5070.

[57]  E. Berti,et al.  Floating and sinking: the imprint of massive scalars around rotating black holes. , 2011, Physical review letters.

[58]  Daniel Baumann,et al.  Signature of supersymmetry from the early universe , 2011, 1109.0292.

[59]  A. Arvanitaki,et al.  Exploring the String Axiverse with Precision Black Hole Physics , 2010, 1004.3558.

[60]  Rafael A. Porto,et al.  Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries [Phys. Rev. D 78, 044013 (2008)] , 2010 .

[61]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[62]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[63]  I. Buchbinder,et al.  Quantum equivalence of massive antisymmetric tensor field models in curved space , 2008, 0806.3505.

[64]  E. Poisson,et al.  Nonrotating black hole in a post-Newtonian tidal environment , 2008, 0806.3052.

[65]  Rafael A. Porto,et al.  Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries , 2008, 0804.0260.

[66]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[67]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[68]  S. Dolan Instability of the massive Klein-Gordon field on the Kerr spacetime , 2007, 0705.2880.

[69]  Rafael A. Porto Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity , 2006 .

[70]  Rafael A. Porto Post-Newtonian corrections to the motion of spinning bodies in NRGR , 2005, gr-qc/0511061.

[71]  I. Rothstein,et al.  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[72]  Daniel W. Lozier,et al.  NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.

[73]  H. Jauslin,et al.  Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory , 2003 .

[74]  E. Poisson Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.

[75]  V. Elser,et al.  S-matrix for generalized Landau-Zener problem , 1993 .

[76]  S. Detweiler KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES , 1980 .

[77]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[78]  Jacob D. Bekenstein,et al.  Extraction of energy and charge from a black hole , 1973 .

[79]  Y. Zel’dovich Generation of Waves by a Rotating Body , 1971 .

[80]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[81]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[82]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[83]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[84]  Y. Zel’dovich Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body , 1972 .

[85]  W. Press,et al.  Floating Orbits, Superradiant Scattering and the Black-hole Bomb , 1972, Nature.

[86]  L. Landau Zur Theorie der Energieubertragung II , 1932 .