Accurate and Ecient Algorithms for Floating Point Computation
暂无分享,去创建一个
[1] Christos H. Papadimitriou,et al. Elements of the Theory of Computation , 1997, SIGA.
[2] Stephen Smale,et al. Some Remarks on the Foundations of Numerical Analysis , 1990, SIAM Rev..
[3] Kenneth L. Clarkson,et al. Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[4] James Demmel. The Complexity of Accurate Floating Point Computation , 2002 .
[5] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[6] Plamen Koev,et al. Accurate and efficient computations with structured matrices , 2002 .
[7] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[8] Nicholas J. Higham,et al. Stability analysis of algorithms for solving confluent Vandermonde-like systems , 1990 .
[9] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[10] M. SIAMJ.,et al. ACCURATE EIGENVALUES AND SVDs OF TOTALLY , 2005 .
[11] James Demmel,et al. The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System , 2005, SIAM J. Matrix Anal. Appl..
[12] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[13] Å. Björck,et al. Solution of Vandermonde Systems of Equations , 1970 .
[14] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[15] James Demmel,et al. Accurate SVDs of Structured Matrices , 1998 .
[16] Thomas Kailath,et al. Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .
[17] F. R. Gantmakher,et al. Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme , 1960 .
[18] Juan Manuel Peña,et al. Fast algorithms of Bjo¨rck-Pereyra type for solving Cauchy-Vandermonde linear systems , 1998 .
[19] Froilán M. Dopico,et al. An Orthogonal High Relative Accuracy Algorithm for the Symmetric Eigenproblem , 2003, SIAM J. Matrix Anal. Appl..
[20] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[21] Felipe Cucker,et al. Complexity estimates depending on condition and round-off error , 1998, JACM.
[22] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[23] J. Demmel,et al. Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .
[24] Qiang Ye,et al. Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix , 2002, Math. Comput..
[25] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[26] Douglas M. Priest,et al. Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.
[27] Qiang Ye,et al. Entrywise perturbation theory for diagonally dominant M-matrices with applications , 2002, Numerische Mathematik.
[28] James Demmel,et al. Accurate SVDs of weakly diagonally dominant M-matrices , 2004, Numerische Mathematik.
[29] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .