A space–time discontinuous Galerkin finite element method for fully coupled linear thermo-elasto-dynamic problems with strain and heat flux discontinuities☆

Abstract A discontinuous Galerkin finite element method for the solution of linear thermo-elasto-dynamic problems is proposed and its unconditional stability without any restrictions on the grid structure is proven. Applications to space–time problems with discontinuous data are demonstrated.

[1]  Nils-Erik Wiberg,et al.  STRUCTURAL DYNAMIC ANALYSIS BY A TIME‐DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD , 1996 .

[2]  Francesco Costanzo,et al.  Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics , 2005 .

[3]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[4]  Nils-Erik Wiberg,et al.  Adaptive FEA of Wave Propagation Induced by High-Speed Trains , 2001 .

[5]  P. B. Bailey,et al.  Thermodynamic influences on one dimensional shock waves and induced discontinuities in thermoelastic bodies and second order effects , 1986 .

[6]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[7]  Tae Won Lee,et al.  Efficient time-domain finite element analysis for dynamic coupled thermoelasticity , 1992 .

[8]  Peter Monk,et al.  A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media , 2005, J. Sci. Comput..

[9]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[10]  Denis Aubry,et al.  Adaptive strategy for transient/coupled problems applications to thermoelasticity and elastodynamics , 1999 .

[11]  Gregory M. Hulbert,et al.  Discontinuity-capturing operators for elastodynamics , 1992 .

[12]  Robert B. Haber,et al.  A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance , 2006 .

[13]  James K. Knowles,et al.  On the driving traction acting on a surface of strain discontinuity in a continuum , 1990 .

[14]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[15]  Peter Hansbo,et al.  Space‐time finite elements and an adaptive strategy for the coupled thermoelasticity problem , 2003 .

[16]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[17]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[18]  W. Ames Mathematics in Science and Engineering , 1999 .

[19]  Ted Belytschko,et al.  A local space-time discontinuous finite element method , 2006 .

[20]  Francesco Costanzo,et al.  On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities , 2002 .

[21]  James K. Knowles,et al.  Dynamics of propagating phase boundaries: Thermoelastic solids with heat conduction , 1994 .

[22]  Nils-Erik Wiberg,et al.  Adaptive finite element procedures for linear and non‐linear dynamics , 1999 .

[23]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[24]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .