Interpreting the sub-linear Kennicutt–Schmidt relationship: the case for diffuse molecular gas

Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt–Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ CO dep τdepCO ) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ CO dep τdepCO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.

[1]  R. Klessen,et al.  THE CO-TO-H2 CONVERSION FACTOR ACROSS THE PERSEUS MOLECULAR CLOUD , 2014, 1401.5117.

[2]  S. Longmore,et al.  An uncertainty principle for star formation - I. Why galactic star formation relations break down below a certain spatial scale , 2014, 1401.4459.

[3]  P. Goldsmith,et al.  A Herschel (C II) Galactic plane survey II. CO-dark H2 in clouds , 2013, 1312.3320.

[4]  M. Heyer,et al.  THE DENSE GAS MASS FRACTION OF MOLECULAR CLOUDS IN THE MILKY WAY , 2013, 1312.0643.

[5]  Christopher N. Beaumont,et al.  QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS , 2013, 1310.1929.

[6]  A. Leroy,et al.  A HIGH-DISPERSION MOLECULAR GAS COMPONENT IN NEARBY GALAXIES , 2013, 1309.6324.

[7]  D. Calzetti,et al.  STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES , 2013, 1306.5531.

[8]  R. Klessen,et al.  Indications of a sub-linear and non-universal Kennicutt-Schmidt relationship , 2013, 1306.2951.

[9]  C. Kramer,et al.  THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). I. A CLOUD-SCALE/MULTI-WAVELENGTH VIEW OF THE INTERSTELLAR MEDIUM IN A GRAND-DESIGN SPIRAL GALAXY , 2013, 1304.1801.

[10]  C. Kramer,et al.  THE PLATEAU DE BURE + 30 m ARCSECOND WHIRLPOOL SURVEY REVEALS A THICK DISK OF DIFFUSE MOLECULAR GAS IN THE M51 GALAXY , 2013, 1304.1396.

[11]  C. Kramer,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF 12CO(J = 1 → 0) BRIGHTNESS AND INTEGRATED INTENSITY IN M51: THE PAWS VIEW , 2013, 1304.1219.

[12]  Christine D. Wilson,et al.  HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). III. THE STAR FORMATION LAW IN M31 , 2013, 1303.6284.

[13]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[14]  H. Rix,et al.  MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES , 2013, 1301.2328.

[15]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[16]  P. Hopkins,et al.  Why is the Milky Way X-factor constant? , 2012, 1210.2724.

[17]  F. Bigiel,et al.  Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression , 2012, 1210.1218.

[18]  M. Krumholz STAR FORMATION IN ATOMIC GAS , 2012, 1208.1504.

[19]  D. L. Clements,et al.  The JCMT Nearby Galaxies Legacy Survey - VIII. CO data and the L -L correlation in the SINGS sample , 2012, 1206.1629.

[20]  E. Ostriker,et al.  MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION , 2012, 1205.3174.

[21]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[22]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[23]  E. Ostriker,et al.  A general model for the CO–H2 conversion factor in galaxies with applications to the star formation law , 2011, 1110.3791.

[24]  A. Bolatto,et al.  CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). II. MOLECULAR GAS STAR FORMATION LAW AND DEPLETION TIME ACROSS THE BLUE SEQUENCE , 2011, 1110.1630.

[25]  E. Ostriker,et al.  REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: NUMERICAL TESTS OF THE THERMAL/DYNAMICAL EQUILIBRIUM MODEL , 2011, 1109.0028.

[26]  J. Pringle,et al.  The properties of the interstellar medium in disc galaxies with stellar feedback , 2011, 1107.0154.

[27]  C. Kramer,et al.  A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES , 2011, 1105.4605.

[28]  S. Glover,et al.  Is molecular gas necessary for star formation , 2011, 1105.3073.

[29]  D. Calzetti,et al.  THE SUPER-LINEAR SLOPE OF THE SPATIALLY RESOLVED STAR FORMATION LAW IN NGC 3521 AND NGC 5194 (M51a) , 2011, 1104.4122.

[30]  E. Ostriker,et al.  The CO-H2 Conversion Factor in Disc Galaxies and Mergers , 2011, 1104.4118.

[31]  R. Klessen,et al.  Modelling CO emission – II. The physical characteristics that determine the X factor in Galactic molecular clouds , 2011, 1104.3695.

[32]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[33]  E. Ostriker,et al.  MAXIMALLY STAR-FORMING GALACTIC DISKS. I. STARBURST REGULATION VIA FEEDBACK-DRIVEN TURBULENCE , 2011, 1102.1446.

[34]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[35]  A. Leroy,et al.  WHICH PHASE OF THE INTERSTELLAR MEDIUM CORRELATES WITH THE STAR FORMATION RATE? , 2011, 1101.1296.

[36]  J. Kruschke Doing Bayesian Data Analysis , 2010 .

[37]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[38]  A. Bolatto,et al.  CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING): MOLECULAR GAS STAR FORMATION LAW IN NGC 4254 , 2010, 1009.3272.

[39]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[40]  A. Leroy,et al.  THE SCALE DEPENDENCE OF THE MOLECULAR GAS DEPLETION TIME IN M33 , 2010, 1009.1651.

[41]  N. Evans,et al.  THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES , 2010, 1009.1621.

[42]  A. Leroy,et al.  REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: A THERMAL/DYNAMICAL EQUILIBRIUM MODEL , 2010, 1008.0410.

[43]  A. Leroy,et al.  EXTREMELY INEFFICIENT STAR FORMATION IN THE OUTER DISKS OF NEARBY GALAXIES , 2010, 1007.3498.

[44]  N. Murray STAR FORMATION EFFICIENCIES AND LIFETIMES OF GIANT MOLECULAR CLOUDS IN THE MILKY WAY , 2010, 1007.3270.

[45]  A. Hirota,et al.  BREAKDOWN OF KENNICUTT–SCHMIDT LAW AT GIANT MOLECULAR CLOUD SCALES IN M33 , 2010, 1006.5764.

[46]  J. Pety,et al.  The CO luminosity and CO-H2 conversion factor of diffuse ISM: does CO emission trace dense molecular gas? , 2010, 1005.2157.

[47]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[48]  S. Glover,et al.  On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds , 2010, 1003.1340.

[49]  A. Goodman,et al.  THE EFFECT OF PROJECTION ON DERIVED MASS–SIZE AND LINEWIDTH–SIZE RELATIONSHIPS , 2010, 1001.4549.

[50]  The University of Texas at Austin,et al.  THE SPATIALLY RESOLVED STAR FORMATION LAW FROM INTEGRAL FIELD SPECTROSCOPY: VIRUS-P OBSERVATIONS OF NGC 5194 , 2009, 0908.2810.

[51]  Mubdi Rahman,et al.  STAR FORMATION IN MASSIVE CLUSTERS VIA THE WILKINSON MICROWAVE ANISOTROPY PROBE AND THE SPITZER GLIMPSE SURVEY , 2009, 0906.1026.

[52]  E. Brinks,et al.  HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY , 2009, 0905.4742.

[53]  J. Leech,et al.  THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. I. STAR-FORMING MOLECULAR GAS IN VIRGO CLUSTER SPIRAL GALAXIES , 2008, 0812.1718.

[54]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[55]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[56]  E. Ostriker,et al.  Cloud and Star Formation in Disk Galaxy Models with Feedback , 2008, 0805.3996.

[57]  R. Davé,et al.  Molecular Star Formation Rate Indicators in Galaxies , 2007, 0711.1361.

[58]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[59]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[60]  T. Thompson,et al.  The Relationship between Molecular Gas Tracers and Kennicutt-Schmidt Laws , 2007, 0704.0792.

[61]  E. Rosolowsky,et al.  High-Resolution Molecular Gas Maps of M33 , 2007, astro-ph/0703006.

[62]  E. Burgh,et al.  Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium , 2006, astro-ph/0611853.

[63]  W. Wall Rethinking the N(H2)/I(CO) conversion factor , 2006, astro-ph/0610209.

[64]  B. Milliard,et al.  The GALEX Ultraviolet Atlas of Nearby Galaxies , 2006, astro-ph/0606440.

[65]  P. Solomon,et al.  Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation , 2005, astro-ph/0511424.

[66]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[67]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[68]  U. Texas,et al.  Interstellar Turbulence II: Implications and Effects , 2004, astro-ph/0404452.

[69]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[70]  C. F. Gammie,et al.  Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment, and Rotation , 2003, astro-ph/0306148.

[71]  L. Blitz,et al.  The BIMA Survey of Nearby Galaxies (BIMA SONG). II. The CO Data , 2002, astro-ph/0304294.

[72]  A. Kawamura,et al.  A Survey for High-Latitude Molecular Clouds toward Infrared-Excess Clouds with NANTEN , 2001 .

[73]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[74]  J. Ballesteros-Paredes,et al.  Physical versus Observational Properties of Clouds in Turbulent Molecular Cloud Models , 2001, astro-ph/0108136.

[75]  R. Allen,et al.  The formation of molecular clouds , 2001, astro-ph/0106420.

[76]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[77]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[78]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[79]  B. Elmegreen Starbursts by gravitational collapse in the inner Lindblad resonance rings of galaxies , 1994 .

[80]  C. Wilson,et al.  Diffuse Molecular Clouds and the Molecular Interstellar Medium from 13CO Observations of M33 , 1994, astro-ph/9403008.

[81]  B. Elmegreen Star Formation at Compressed Interfaces in Turbulent Self-gravitating Clouds , 1993 .

[82]  B. Elmegreen The H to H2 transition in galaxies - Totally molecular galaxies , 1993 .

[83]  R. Kennicutt The Star Formation Law in Galactic Disks , 1989 .

[84]  A. R. Rivolo,et al.  A Face-on View of the First Galactic Quadrant in Molecular Clouds , 1989 .

[85]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[86]  R. Wilson,et al.  Molecules in Galaxies. VI. Diffuse and Dense Cloud Contributions to the Large-Scale CO Emission of the Galaxy , 1988 .

[87]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[88]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[89]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[90]  L. Mundy,et al.  High-latitude molecular clouds , 1984 .

[91]  M. Schmidt The Rate of Star Formation , 1959 .

[92]  T. Abel,et al.  DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. II: SPATIALLY-RESOLVED STAR FORMATION RELATION , 2013 .

[93]  P. Maloney Are molecular clouds in virial equilibrium , 1990 .

[94]  J. Scalo Perception of interstellar structure - Facing complexity , 1990 .