Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome.

As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide approximately 13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of the rat sequence assembly. The remaining 18 contigs, containing 54 clones, still require placement. The fingerprint map is a high-resolution integrative data resource that provides genome-ordered associations among BAC, YAC, and PAC clones and the assembled sequence of the rat genome.

Sarah Barber | Andre Marziali | Hans Lehrach | John D McPherson | Shaying Zhao | Martin Krzywinski | Marco Marra | Elaine Mardis | Readman Chiu | Heesun Shin | Kazutoyo Osoegawa | George Yang | Thomas Kreitler | Heinz Himmelbauer | Pawan Pandoh | Norbert Hübner | Alison Cloutier | Jennifer Asano | Mabel Brown-John | Steven Jones | Ian Bosdet | T. Graves | E. Mardis | J. McPherson | M. Krzywinski | J. Wallis | J. Schein | Shaying Zhao | P. D. de Jong | H. Himmelbauer | K. Osoegawa | L. Hillier | M. Marra | B. Zhu | H. Lehrach | A. Siddiqui | Jason R. Walker | Steven P. Jones | Readman Chiu | Susanna Y. Chan | Darlene Lee | Michael Mayo | N. Wye | W. Warren | D. Layman | I. Bosdet | C. Fjell | Carrie A. Mathewson | N. Hübner | D. Ganten | O. Hummel | T. Kreitler | H. Zimdahl | Jonathon Davito | A. Prabhu | Kelly Mead | M. Sekhon | T. Gaige | J. Asano | Noreen Girn | P. Pandoh | M. Tsai | George S. Yang | Heesun Shin | Richard Wilson | Alison Cloutier | A. Marziali | Sarah A. Barber | Oliver Hummel | Jacqueline Schein | Mandeep Sekhon | John Wallis | Tony Gaige | Dan Layman | Kelly Mead | Susanna Chan | Chris Fjell | Noreen Girn | Carrie Mathewson | Anna-Liisa Prabhu | Miranda Tsai | Natasja Wye | Asim Siddiqui | Claudia Gösele | Tina Graves | Baoli Zhu | Derek Albracht | Steve Chand | Jonathon Davito | Detlev Ganten | Kurtis Guggenheimer | Stephen Leach | Darlene Lee | Michael Mayo | Teika Olson | Simone Tänzer | Jason Thompson | Jason Walker | LaDeana Hillier | Heike Zimdahl | Pieter J de Jong | Wes Warren | Richard Wilson | Simone Tänzer | Mabel Brown-John | T. Olson | S. Chand | S. Leach | Jason D. Thompson | C. Gösele | Kurtis Guggenheimer | Derek Albracht | A. Cloutier | Daniel Layman | Tina Graves

[1]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[2]  Shaying Zhao,et al.  BAC resources for the rat genome project. , 2004, Genome research.

[3]  Thomas Cremer,et al.  Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization , 1993, Human Genetics.

[4]  Shaying Zhao,et al.  Library construction, physical mapping, and sequencing , 2004 .

[5]  Marco Marra,et al.  High-throughput BAC fingerprinting. , 2004, Methods in molecular biology.

[6]  P. Deininger,et al.  Sporadic amplification of ID elements in rodents , 2004, Journal of Molecular Evolution.

[7]  Robert H. Singer,et al.  Fluorescence in situ hybridization: past, present and future , 2003, Journal of Cell Science.

[8]  Christopher D Fjell,et al.  Internet Contig Explorer (iCE)--a tool for visualizing clone fingerprint maps. , 2003, Genome research.

[9]  Parvaneh Saeedi,et al.  Software for automated analysis of DNA fingerprinting gels. , 2003, Genome research.

[10]  N. Carter,et al.  DNA microarrays for comparative genomic hybridization based on DOP‐PCR amplification of BAC and PAC clones , 2003, Genes, chromosomes & cancer.

[11]  Jens Holmberg,et al.  Positional identification of Ncf1 as a gene that regulates arthritis severity in rats , 2003, Nature Genetics.

[12]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[13]  N. Hollenberg,et al.  A genomic-systems biology map for cardiovascular function. , 2002, Current hypertension reports.

[14]  Parvaneh Saeedi,et al.  A physical map of the mouse genome , 2002, Nature.

[15]  Yutaka Seino,et al.  Cblb is a major susceptibility gene for rat type 1 diabetes mellitus , 2002, Nature Genetics.

[16]  Steven J. M. Jones,et al.  Assembly of fingerprint contigs: parallelized FPC , 2002, Bioinform..

[17]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[18]  H. Himmelbauer,et al.  Advanced integrated mouse YAC map including BAC framework. , 2001, Genome Research.

[19]  Ajay N. Jain,et al.  Assembly of microarrays for genome-wide measurement of DNA copy number , 2001, Nature Genetics.

[20]  M. Yoshida,et al.  Genomic organization and chromosomal distribution of rat ID elements. , 2001, Genes & genetic systems.

[21]  V. Sheffield,et al.  Generation of a high-density rat EST map. , 2001, Genome research.

[22]  G. F. Barry The use of the Monsanto draft rice genome sequence in research. , 2001, Plant physiology.

[23]  D. Haussler,et al.  A physical map of the human genome , 2001, Nature.

[24]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[25]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[26]  K Lindpaintner,et al.  High-throughput scanning of the rat genome using interspersed repetitive sequence-PCR markers. , 2000, Genomics.

[27]  C. Soderlund,et al.  Contigs built with fingerprints, markers, and FPC V4.7. , 2000, Genome research.

[28]  G M Rubin,et al.  A BAC-based physical map of the major autosomes of Drosophila melanogaster. , 2000, Science.

[29]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[30]  R. Agarwala,et al.  A fast and scalable radiation hybrid map construction and integration strategy. , 2000, Genome research.

[31]  Sebastian Kloska,et al.  A complete BAC-based physical map of the Arabidopsis thaliana genome , 1999, Nature Genetics.

[32]  Marco Marra,et al.  A map for sequence analysis of the Arabidopsis thaliana genome , 1999, Nature Genetics.

[33]  R G Steen,et al.  A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. , 1999, Genome research.

[34]  C. Webber,et al.  A radiation hybrid map of the rat genome containing 5,255 markers , 1999, Nature Genetics.

[35]  James Scott,et al.  Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats , 1999, Nature Genetics.

[36]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[37]  A. Monaco,et al.  Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. , 1998, Genomics.

[38]  F. Da Silva,et al.  Comparative genomic hybridization: technical development and cytogenetic aspects for routine use in clinical laboratories. , 1998, Annales de genetique.

[39]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[40]  R. Wilson,et al.  High throughput fingerprint analysis of large-insert clones. , 1997, Genome research.

[41]  Carol Soderlund,et al.  FPC: a system for building contigs from restriction fingerprinted clones , 1997, Comput. Appl. Biosci..

[42]  K Lindpaintner,et al.  Why map the rat? , 1997, Trends in genetics : TIG.

[43]  H. Lehrach,et al.  Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat, Rattus norvegicus. , 1997, Genomics.

[44]  Elaine R. Mardis,et al.  In Genome analysis: A laboratory manual , 1997 .

[45]  P. Deininger,et al.  Recent amplification of rat ID sequences. , 1996, Journal of molecular biology.

[46]  L Kruglyak,et al.  An STS-Based Map of the Human Genome , 1995, Science.

[47]  R. Chaganti,et al.  Comparative genomic hybridization: an overview. , 1994, The American journal of pathology.

[48]  P. Lichter,et al.  Mapping and chromosome analysis: the potential of fluorescence in situ hybridization. , 1994, Journal of biotechnology.

[49]  J. Brosius,et al.  Rodent BC1 RNA gene as a master gene for ID element amplification. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[51]  K. Lange,et al.  Statistical methods for multipoint radiation hybrid mapping. , 1991, American journal of human genetics.

[52]  P. L. Deininger,et al.  SINEs: Short interspersed repeated DNA elements in higher eucaryotes. , 1989 .

[53]  Rodger Staden,et al.  Software for genome mapping by fingerprinting techniques , 1988, Comput. Appl. Biosci..

[54]  S. Kobayashi,et al.  Conservation of the ID sequence and its expression as small RNA in rodent brains: analysis with cDNA for mouse brain-specific small RNA. , 1987, Brain research.

[55]  C. Sapienza,et al.  ‘Brain-specific’ transcription and evolution of the identifier sequence , 1986, Nature.

[56]  P. Deininger,et al.  Repeat sequence families derived from mammalian tRNA genes , 1985, Nature.

[57]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.