Mixed models and multiple comparisons in analysis of human neurochemical maps

Examination of brain regional neurochemistry in disease states reveals differences among brain regions. Knowing where alterations in brain function are located is crucial to understanding the disease effect. The anatomical distribution of neurotransmitter receptors is now often studied using quantitative autoradiography, but the large number of brain regions involved raises serious problems for statistical analysis of such data. Due to the dependence among the subjects in case control designs, statistical analysis based on a 'mixed model' is useful. Such an analysis is illustrated using a small autoradiographic data set. The Bonferroni method, the method of Holm, and two 'False Discovery Rate'-controlling methods for adjusting P-values for multiple comparisons are compared.

[1]  N. Volkow,et al.  Quantitative autoradiography of cocaine binding sites in human brain postmortem , 1992, Synapse.

[2]  G. Rajkowska Morphometric Methods for Studying the Prefrontal Cortex in Suicide Victims and Psychiatric Patients , 1997, Annals of the New York Academy of Sciences.

[3]  D. Grandy,et al.  Dopamine Receptor Gene Expression in the Human Medial Temporal Lobe , 1994, Neuropsychopharmacology.

[4]  A. Biegon,et al.  Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide. , 1990, Archives of general psychiatry.

[5]  H. Ladinsky,et al.  Comparative anatomical distribution of serotonin 1A, 1Dα and 2A receptor mRNAs in human brain postmorten , 1996 .

[6]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[7]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[8]  J. John Mann,et al.  Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims , 1995, Brain Research.

[9]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[10]  J. Joyce,et al.  Comparison of [3H]Paroxetine and [3H]Cyanoimipramine for Quantitative Measurement of Serotonin Transporter Sites in Human Brain , 1996, Neuropsychopharmacology.

[11]  Anat Biegon,et al.  Autoradiographic analysis of serotonin 5-HT1A receptor binding in the human brain postmortem: effects of age and alcohol , 1991, Brain Research.

[12]  Michael E. Phelps,et al.  PET imaging: An overview and instrumentation , 1990 .

[13]  Mitchell H. Gail,et al.  A Reminder of the Fallibility of the Wald Statistic , 1996 .

[14]  R. Littell SAS System for Mixed Models , 1996 .

[15]  S. Sarkar Some probability inequalities for ordered $\rm MTP\sb 2$ random variables: a proof of the Simes conjecture , 1998 .

[16]  P. Jenner Neurotransmitter Receptor Binding. 2nd Ed , 1985 .

[17]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[18]  Paul J. Harrison,et al.  [3H]WAY–100635 for 5–HT1A receptor autoradiography in human brain: a comparison with [3H]8–OH–DPAT and demonstration of increased binding in the frontal cortex in schizophrenia , 1997, Neurochemistry International.

[19]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[20]  J. Overall,et al.  False-positive error rates in routine application of repeated measurements ANOVA. , 1996, Journal of biopharmaceutical statistics.

[21]  Keith J. Worsley,et al.  The Geometry of Random Images , 1996 .

[22]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[23]  B. J. Winer Statistical Principles in Experimental Design , 1992 .

[24]  V. Arango,et al.  Postmortem Findings in Suicide Victims. Implications for in Vivo Imaging Studies a , 1997, Annals of the New York Academy of Sciences.

[25]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[26]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[27]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[28]  M. Aickin,et al.  Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. , 1996, American journal of public health.

[29]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[30]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .

[31]  Audris Mockus,et al.  The Challenge of Functional Magnetic Resonance Imaging , 1999 .

[32]  C. Tamminga,et al.  D2-Family receptor distribution in human postmortem tissue: an autoradiographic study , 1995, Neuroreport.

[33]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[34]  T. Morikawa,et al.  Power evaluation of various modified Bonferroni procedures by a Monte Carlo study. , 1996, Journal of biopharmaceutical statistics.