Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging

We present a high-power (18 mW continuous wave exiting a single-mode fiber and 35 mW exiting the facet), broadband (85 nm full-width at half-maximum) quantum dot-based superluminescent diode, and apply it to a time-domain optical coherence tomography (OCT) setup. First, we test its performance with increasing optical feedback. Then we demonstrate its imaging properties on tissue-engineered (TE) skin and in vivo skin. OCT allows the tracking of epidermal development in TE skin, while the higher power source allows better sensitivity and depth penetration for imaging of in vivo skin layers.

[1]  Y.-C. Xin,et al.  1.3-$\mu$m Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth , 2007, IEEE Photonics Technology Letters.

[2]  Nikola Krstajic,et al.  Maximising performance of optical coherence tomography systems using a multi-section chirped quantum dot superluminescent diode , 2009, Microelectron. J..

[3]  David D Sampson,et al.  Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Richard A. Hogg,et al.  Self-assembled quantum-dot superluminescent light-emitting diodes , 2010 .

[5]  R. Anderson,et al.  The optics of human skin. , 1981, The Journal of investigative dermatology.

[6]  Louise E. Smith,et al.  Examination of the effects of poly(N-vinylpyrrolidinone) hydrogels in direct and indirect contact with cells. , 2006, Biomaterials.

[7]  B. E. Bouma,et al.  Wavelength Swept Lasers , 2008 .

[8]  K Grieve,et al.  Three-dimensional cellular-level imaging using full-field optical coherence tomography. , 2004, Physics in medicine and biology.

[9]  J. Fujimoto,et al.  High-speed phase- and group-delay scanning with a grating-based phase control delay line. , 1997, Optics letters.

[10]  S. Macneil,et al.  Keratinocytes contract human dermal extracellular matrix and reduce soluble fibronectin production by fibroblasts in a skin composite model. , 1997, British journal of plastic surgery.

[11]  T. Gambichler,et al.  The European standard for sun‐protective clothing: EN 13758 , 2006, Journal of the European Academy of Dermatology and Venereology : JEADV.

[12]  Arnaud Dubois,et al.  Full-Field Optical Coherence Tomography , 2008 .

[13]  M. Först,et al.  High‐resolution optical coherence tomography as a non‐destructive monitoring tool for the engineering of skin equivalents , 2006, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[14]  T. Gambichler,et al.  Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison , 2006, Journal of the European Academy of Dermatology and Venereology : JEADV.

[15]  Richard A. Hogg,et al.  Broad-band Superluminescent Light Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells , 2005 .

[16]  M. Hopkinson,et al.  Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode , 2006 .

[17]  S. Mac Neil,et al.  Development of autologous human dermal–epidermal composites based on sterilized human allodermis for clinical use , 1999, The British journal of dermatology.

[18]  H. G. Rylander,et al.  Use of an agent to reduce scattering in skin , 1999, Lasers in surgery and medicine.

[19]  D. Gawkrodger,et al.  Simplifying the delivery of melanocytes and keratinocytes for the treatment of vitiligo using a chemically defined carrier dressing. , 2008, The Journal of investigative dermatology.

[20]  V. R. Shidlovski,et al.  Superluminescent Diode Light Sources for OCT , 2008 .

[21]  H. Green,et al.  Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is , 1975, Cell.

[22]  Sheila MacNeil,et al.  Progress and opportunities for tissue-engineered skin , 2007, Nature.

[23]  Ruikang K. Wang,et al.  Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues. , 2002, Physics in medicine and biology.

[24]  H Green,et al.  Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. , 1975, Cell.

[25]  J. Welzel Optical coherence tomography in dermatology: a review , 2001, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[26]  H.J.C.M. Sterenborg,et al.  Skin optics , 1989, IEEE Transactions on Biomedical Engineering.

[27]  Gregor B.E. Jemec,et al.  Morphology and Epidermal Thickness of Normal Skin Imaged by Optical Coherence Tomography , 2008, Dermatology.

[28]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[29]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[30]  M. Hopkinson,et al.  High-Power and Broadband Quantum Dot Superluminescent Diodes Centered at 1250 nm for Optical Coherence Tomography , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Mark Hopkinson,et al.  Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  T. Gambichler,et al.  In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. , 2006, Journal of dermatological science.

[33]  M. Hopkinson,et al.  Multi-section quantum dot superluminescent diodes for spectral shape engineering , 2009 .

[34]  Wei Zhou,et al.  Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum , 1999 .

[35]  A. Fiore,et al.  Characterization and Modeling of Broad Spectrum InAs–GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2–1.3 $\mu$m , 2007, IEEE Journal of Quantum Electronics.

[36]  Bruce J Tromberg,et al.  Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. , 2004, Journal of biomedical optics.

[37]  Eva Lankenau,et al.  OCT in Dermatology , 2008 .

[38]  J. Fujimoto,et al.  Optical coherence tomography: technology and applications , 2002, IEEE/LEOS International Conference on Optical MEMs.

[39]  T. Hancewicz,et al.  Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. , 2004, Optics express.

[40]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[41]  Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback. , 2009, Optics express.

[42]  A. Boccara,et al.  Thermal-light full-field optical coherence tomography. , 2002, Optics letters.

[43]  M. Hopkinson,et al.  High-Power 1.3-$\mu$m Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy , 2007, IEEE Photonics Technology Letters.

[44]  Angelika Unterhuber,et al.  Broad Bandwidth Laser and Nonlinear Optical Light Sources for OCT , 2008 .