The contribution of serum triacylglycerol to hepatic triacylglycerol turnover in the starved rat.

The present study was undertaken to evaluate quantitatively the turnover of serum triacylglycerol (triglyceride) in the starved rat and to determine whether serum triacylglycerol recycled to liver contributes a significant fraction of the total hepatic triacylglycerol turnover. Serum was labelled in vitro with [3H]trioleoylglycerol (glycerol [3H]trioleate) to provide uniform labelling of all lipoprotein species. By using the curves describing disappearance of isotope from serum and its appearance in liver, rate constants for movement of triacylglycerol out of serum (0.29 min-1) and the uptake of serum triacylglycerol by liver (0.22 min-1) were calculated. The total rate of movement (flux) of triacylglycerol in these processes, the product of rate constant and serum pool size, was calculated to be 0.39 and 0.29 mg/min per 100 g body wt. respectively. A model is postulated for whole-body triacylglycerol metabolism consistent with the present data as well as most observations in the literature. From the model it can be predicted that: (1) the entire turnover of liver triacylglycerol in the starved rat can be accounted for on the basis of contributions from serum non-esterified fatty acid and serum triacylglycerol; (2) the entire turnover of the serum triacylglycerol pool can be accounted for quantitatively on the basis of contributions from intestine and liver; (3) the release rate for triacylglycerol from liver should be 0.34 to 0.35 mg/min per 100 g body wt.; (4) triacylglycerol synthesized by liver from non-esterified fatty acid of serum and by intestine can account quantitatively for the irreversible disposal rate of triacylglycerol from serum.