Distribution System Model Calibration With Big Data From AMI and PV Inverters

Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. The parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.

[1]  Turan Gonen,et al.  Electric power distribution system engineering , 1985 .

[2]  T. A. Short,et al.  Efficiency impacts of distribution secondaries , 2012, PES T&D 2012.

[3]  Andrew John Berrisford A tale of two transformers: An algorithm for estimating distribution secondary electric parameters using smart meter data , 2013, 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).

[4]  Santiago Grijalva,et al.  Reduction of distribution feeders for simplified PV impact studies , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[5]  Tom A. Short,et al.  Advanced Metering for Phase Identification, Transformer Identification, and Secondary Modeling , 2013, IEEE Transactions on Smart Grid.

[6]  Bing Wang,et al.  Generate distribution circuit model using AMI data , 2014, 2014 China International Conference on Electricity Distribution (CICED).

[7]  Santiago Grijalva,et al.  Distribution system low-voltage circuit topology estimation using smart metering data , 2016, 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D).

[8]  Santiago Grijalva,et al.  Distribution System Secondary Circuit Parameter Estimation for Model Calibration , 2015 .

[9]  A. G. Expósito,et al.  Power system state estimation : theory and implementation , 2004 .

[10]  N. G. Bretas,et al.  Network branch parameter validation based on a decoupled State/Parameter Estimator and historical data , 2009, 2009 IEEE Bucharest PowerTech.

[11]  A. G. Expósito,et al.  Power system parameter estimation: a survey , 2000 .

[12]  Jing Huang,et al.  State Estimation in Electric Power Grids: Meeting New Challenges Presented by the Requirements of the Future Grid , 2012, IEEE Signal Processing Magazine.

[13]  Matthew J. Reno,et al.  Grid Integrated Distributed PV (GridPV) Version 2. , 2014 .

[14]  Santiago Grijalva,et al.  Leveraging AMI Data for Distribution System Model Calibration and Situational Awareness , 2015, IEEE Transactions on Smart Grid.

[15]  N.G. Bretas,et al.  An approach to power system branch parameter estimation , 2008, 2008 IEEE Canada Electric Power Conference.