Primal-dual bilinear programming solution of the absolute value equation

We propose a finitely terminating primal-dual bilinear programming algorithm for the solution of the NP-hard absolute value equation (AVE): Ax − |x| = b, where A is an n × n square matrix. The algorithm, which makes no assumptions on AVE other than solvability, consists of a finite number of linear programs terminating at a solution of the AVE or at a stationary point of the bilinear program. The proposed algorithm was tested on 500 consecutively generated random instances of the AVE with n = 10, 50, 100, 500 and 1,000. The algorithm solved 88.6% of the test problems to an accuracy of 10−6.

[1]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[2]  Zheng-Hai Huang,et al.  A note on absolute value equations , 2010, Optim. Lett..

[3]  S. J. Chung NP-Completeness of the linear complementarity problem , 1989 .

[4]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2012, Optim. Lett..

[5]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[6]  Oleg A. Prokopyev,et al.  On equivalent reformulations for absolute value equations , 2009, Comput. Optim. Appl..

[7]  Jiri Rohn,et al.  An algorithm for solving the absolute value equation , 2009 .

[8]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[9]  Jiri Rohn,et al.  A residual existence theorem for linear equations , 2010, Optim. Lett..

[10]  Robert S. Leiken,et al.  A User’s Guide , 2011 .

[11]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[12]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[13]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.

[14]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[15]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[16]  Kristin P. Bennett,et al.  Bilinear separation of two sets inn-space , 1993, Comput. Optim. Appl..

[17]  Jiri Rohn,et al.  An algorithm for computing all solutions of an absolute value equation , 2012, Optim. Lett..

[18]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..