THE FIRST HYPER-LUMINOUS INFRARED GALAXY DISCOVERED BY WISE

We report the discovery by the Wide-field Infrared Survey Explorer (WISE) of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 μm and well detected at 12 or 22 μm). The WISE data and a 350 μm detection give a minimum bolometric luminosity of 3.7 × 10^(13) L_☉, with ~10^(14) L_☉ plausible. Follow-up images reveal four nearby sources: a QSO and two Lyman break galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 M_☉ yr^(–1), accounting for ≲ 10% of the bolometric luminosity. Strong 22 μm emission relative to 350 μm implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10 times above the far-infrared/radio correlation, indicating an active galactic nucleus (AGN) is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M BH-bulge mass relation, the implied Eddington ratio is ≳ 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

[1]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[2]  James Liebert,et al.  The most luminous quasar - S5 0014+81 , 1983 .

[3]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[4]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[5]  R. J. Assef,et al.  THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION , 2010, 1001.4529.

[6]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[7]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[8]  NOAO,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 A LARGE POPULATION OF MID-INFRARED SELECTED, OBSCURED ACTIVE GALAXIES IN THE BOÖTES FIELD , 2022 .

[9]  Alister W. Graham,et al.  The black hole mass – spheroid luminosity relation , 2007, 0705.0618.

[10]  R. J. Assef,et al.  Low Resolution Spectral Templates for AGNs and Galaxies , 2009, 1004.5415.

[11]  Michael C. Cushing,et al.  THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER , 2010, 1011.2279.

[12]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[13]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[14]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[15]  P. A. R. Ade,et al.  A SEARCH FOR COSMIC MICROWAVE BACKGROUND ANISOTROPIES ON ARCMINUTE SCALES WITH BOLOCAM , 2008, 0805.3151.

[16]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[17]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[18]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[19]  James J. Bock,et al.  Bolocam: status and observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[20]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[21]  H. E. Smith,et al.  Obscuration in Extremely Luminous Quasars , 2007, 0709.4458.

[22]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[23]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[24]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[25]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[26]  Scott C. Chapman,et al.  Accurate Spectral Energy Distributions and Selection Effects for High-Redshift Dusty Galaxies: A New Hot Population to Discover with the Spitzer Space Telescope? , 2004, astro-ph/0404438.

[27]  Brazil,et al.  Radio Properties of z > 4 Optically Selected Quasars , 2000, astro-ph/0001394.

[28]  Andrew A. West,et al.  Low-Mass Dwarf Template Spectra from the Sloan Digital Sky Survey , 2006, astro-ph/0610639.

[29]  C. J. Lonsdale,et al.  Active Galactic Nucleus and Starburst Classification from Spitzer Mid-Infrared Spectra for High-Redshift SWIRE Sources , 2006, astro-ph/0608609.

[30]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[31]  M. L. N. Ashby,et al.  IRS Spectra of Two Ultraluminous Infrared Galaxies at z = 1.3 , 2005, astro-ph/0512215.

[32]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008 .

[33]  J. R. Bond,et al.  A 31 GHz SURVEY OF LOW-FREQUENCY SELECTED RADIO SOURCES , 2009, 0901.4330.

[34]  G. Neugebauer,et al.  HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar , 1995, astro-ph/9510093.

[35]  Goran Sandell,et al.  Secondary calibrators at submillimetre wavelengths , 1994 .

[36]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[37]  H. Hirashita,et al.  The role of dust in active and passive low-metallicity star formation , 2004, astro-ph/0404301.

[38]  K. Gordon,et al.  Starburst-like Dust Extinction in the Small Magellanic Cloud , 1998, astro-ph/9802003.

[39]  Dominic J. Benford,et al.  THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4677.

[40]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[41]  Philip Massey,et al.  The Kitt Peak spectrophotometric standards : extension to 1 micron , 1990 .

[42]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[43]  André R. Martel,et al.  FSC 10214+4724: A Gravitationally Lensed, Hidden QSO , 1996 .

[44]  Michael C. Cushing,et al.  THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4678.

[45]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: BEAM MAPS AND WINDOW FUNCTIONS , 2008, 0803.0570.

[46]  Geraint F. Lewis,et al.  NICMOS and VLA Observations of the Gravitationally Lensed Ultraluminous BAL Quasar APM 08279+5255: Detection of a Third Image , 1999, astro-ph/9908052.

[47]  A. Marconi,et al.  Dust in active nuclei. I. evidence for anomalous properties , 2000, astro-ph/0010009.

[48]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[49]  Arjun Dey,et al.  A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2 , 2008, 0801.1860.

[50]  J. R. Houck,et al.  Optical Line Diagnostics of z ≈ 2 Optically Faint Ultraluminous Infrared Galaxies in the Spitzer Boötes Survey , 2007, astro-ph/0703003.

[51]  Lars Hernquist,et al.  The star-forming molecular gas in high-redshift Submillimetre Galaxies , 2009, 0905.2184.

[52]  Hiroshige Yoshida,et al.  A CSO submillimeter active optics system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[53]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[54]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[55]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[56]  J. R. Houck,et al.  THE EXTRAORDINARY MID-INFRARED SPECTRUM OF THE BLUE COMPACT DWARF GALAXY SBS 0335-052 , 2004 .

[57]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[58]  Hiroshige Yoshida,et al.  SHARC II: a Caltech submillimeter observatory facility camera with 384 pixels , 2003, SPIE Astronomical Telescopes + Instrumentation.

[59]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[60]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[61]  Elena Pierpaoli,et al.  CLUSTER MORPHOLOGIES AND MODEL-INDEPENDENT YSZ ESTIMATES FROM BOLOCAM SUNYAEV–ZEL'DOVICH IMAGES , 2010, 1010.1798.

[62]  Beverley J. Wills,et al.  Size and Structure of the Narrow-Line Region of Quasars , 2002, astro-ph/0206334.

[63]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[64]  Peter Mao,et al.  The Nuclear Spectroscopic Telescope Array (NuSTAR) , 2010, Astronomical Telescopes + Instrumentation.

[65]  James Liebert,et al.  Spitzer IRAC Photometry of M, L, and T Dwarfs , 2006, astro-ph/0606432.

[66]  Nozomu Kawakatu,et al.  New method for exploring super-Eddington active galactic nuclei by near-infrared observations , 2011, 1107.2185.

[67]  Anthony H. Gonzalez,et al.  LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm , 2010 .

[68]  Arjun Dey,et al.  On the origin of the ultraviolet continuum emission from the high-redshift radio galaxy 3C 256 , 1996 .

[69]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[70]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .