A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation
暂无分享,去创建一个
[1] L. Mark Berliner,et al. Subsampling the Gibbs Sampler , 1994 .
[2] A. Lijoi,et al. Distributional results for means of normalized random measures with independent increments , 2003 .
[3] Fernando A. Quintana,et al. Nonparametric Bayesian data analysis , 2004 .
[4] J. Lunceford,et al. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study , 2004, Statistics in medicine.
[5] Matteo Ruggiero,et al. Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process? , 2015, IEEE transactions on pattern analysis and machine intelligence.
[6] Ana Ivelisse Avilés,et al. Linear Mixed Models for Longitudinal Data , 2001, Technometrics.
[7] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[8] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[9] George Karabatsos,et al. A Bayesian nonparametric meta‐analysis model , 2013, Research synthesis methods.
[10] A. Gelfand,et al. On nonparametric Bayesian inference for the distribution of a random sample , 1995 .
[11] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[12] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[13] Andrew Thomas,et al. The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.
[14] David S. Lee. Randomized experiments from non-random selection in U.S. House elections , 2005 .
[15] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[16] J. Hahn,et al. IDENTIFICATION AND ESTIMATION OF TREATMENT EFFECTS WITH A REGRESSION-DISCONTINUITY DESIGN , 2001 .
[17] Riten Mitra,et al. Nonparametric Bayesian inference in biostatistics , 2015 .
[18] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[19] P. McCullagh,et al. Generalized Linear Models, 2nd Edn. , 1990 .
[20] Purushottam W. Laud,et al. Predictive Model Selection , 1995 .
[21] Stephen G. Walker,et al. A New Bayesian Nonparametric Mixture Model , 2010, Commun. Stat. Simul. Comput..
[22] David S. Lee,et al. Regression Discontinuity Designs in Economics , 2009 .
[23] W. Gilks. Markov Chain Monte Carlo , 2005 .
[24] J. Schafer,et al. Average causal effects from nonrandomized studies: a practical guide and simulated example. , 2008, Psychological methods.
[25] D. Campbell,et al. Regression-Discontinuity Analysis: An Alternative to the Ex-Post Facto Experiment , 1960 .
[26] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[27] 유정수,et al. 어닐링에 의한 Hierarchical Mixtures of Experts를 이용한 시계열 예측 , 1998 .
[28] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[29] Albert Y. Lo,et al. On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .
[30] S. MacEachern. Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .
[31] A. Bowman,et al. Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .
[32] Thomas D. Cook,et al. "Waiting for Life to Arrive": A history of the regression-discontinuity design in Psychology, Statistics and Economics , 2008 .
[33] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[34] Djc MacKay,et al. Slice sampling - Discussion , 2003 .
[35] B. Hansen. The prognostic analogue of the propensity score , 2008 .
[36] Jonathan R. Stroud,et al. Dynamic models for spatiotemporal data , 2001 .
[37] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[38] Edgar Brunner,et al. Nonparametric analysis of longitudinal data in factorial experiments , 2012 .
[39] M. Pagano,et al. Survival analysis. , 1996, Nutrition.
[40] S. MacEachern,et al. A nonparametric Bayesian model for inference in related longitudinal studies , 2005 .
[41] S. Sharp,et al. Explaining heterogeneity in meta-analysis: a comparison of methods. , 1999 .
[42] Ramsés H. Mena,et al. Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .
[43] Deborah Burr,et al. bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis , 2012 .
[44] R. Gnanadesikan,et al. Probability plotting methods for the analysis of data. , 1968, Biometrika.
[45] I. G. Evans. Bayesian Estimation of Parameters of a Multivariate Normal Distribution , 1965 .
[46] J. H. Schuenemeyer,et al. Generalized Linear Models (2nd ed.) , 1992 .
[47] Stephen G. Walker,et al. Bayesian nonparametric mixed random utility models , 2012, Comput. Stat. Data Anal..
[48] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[49] D. Rubin,et al. The central role of the propensity score in observational studies for causal effects , 1983 .
[50] Rupert G. Miller,et al. Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.
[51] Guilherme J. M. Rosa. The Elements of Statistical Learning: Data Mining, Inference, and Prediction by HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J , 2010 .
[52] L. Hedges,et al. The Handbook of Research Synthesis and Meta-Analysis , 2009 .
[53] Chih-Jen Lin,et al. Probability Estimates for Multi-class Classification by Pairwise Coupling , 2003, J. Mach. Learn. Res..
[54] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[55] C. Chatfield. Continuous Univariate Distributions, Vol. 1 , 1995 .
[56] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[57] G. Casella,et al. Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.
[58] F. Y. Edgeworth,et al. The theory of statistics , 1996 .
[59] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[60] Chuhsing Kate Hsiao,et al. Modeling the Association Between Clusters of SNPs and Disease Responses , 2015 .
[61] E. George,et al. APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .
[62] F. Quintana,et al. Bayesian clustering and product partition models , 2003 .
[63] D. Lindley,et al. Bayes Estimates for the Linear Model , 1972 .
[64] R. Wolpert. Lévy Processes , 2000 .
[65] Roderick J A Little,et al. A Review of Hot Deck Imputation for Survey Non‐response , 2010, International statistical review = Revue internationale de statistique.
[66] Carl E. Rasmussen,et al. Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.
[67] G. Smith,et al. Bias in meta-analysis detected by a simple, graphical test , 1997, BMJ.
[68] P. McCullagh. Partition models , 2015 .
[69] J. Hartigan,et al. A Bayesian Analysis for Change Point Problems , 1993 .
[70] Alan Agresti,et al. Categorical Data Analysis , 2003 .
[71] Michael I. Jordan,et al. Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.
[72] M. Schervish. Theory of Statistics , 1995 .
[73] James M. Flegal,et al. Chapter 1 Implementing Markov chain Monte Carlo : Estimating with confidence , 2010 .
[74] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[75] T. Hanson. Inference for Mixtures of Finite Polya Tree Models , 2006 .
[76] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[77] Adrian F. M. Smith,et al. Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .
[78] Michael A. West,et al. Time Series: Modeling, Computation, and Inference , 2010 .
[79] J. Sethuraman,et al. Convergence of Dirichlet Measures and the Interpretation of Their Parameter. , 1981 .
[80] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[81] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[82] P. Deb. Finite Mixture Models , 2008 .
[83] Peter Müller,et al. DPpackage: Bayesian Semi- and Nonparametric Modeling in R , 2011 .
[84] D. Nychka. Spatial‐Process Estimates as Smoothers , 2012 .
[85] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[86] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.
[87] Stephen P. Brooks,et al. Quantitative convergence assessment for Markov chain Monte Carlo via cusums , 1998, Stat. Comput..
[88] Stephen G. Walker,et al. A nonparametric dependent process for Bayesian regression , 2009 .
[89] R. Gray,et al. Calculation of polychotomous logistic regression parameters using individualized regressions , 1984 .
[90] Purushottam W. Laud,et al. Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .
[91] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[92] M. Borenstein. Effect sizes for continuous data. , 2009 .
[93] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[94] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[95] S. Walker,et al. Adaptive-modal Bayesian nonparametric regression , 2012 .
[96] D. Blei. Bayesian Nonparametrics I , 2016 .
[97] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[98] S. MacEachern,et al. An ANOVA Model for Dependent Random Measures , 2004 .
[99] W. Gilks,et al. Random-effects models, for longitudinal data using Gibbs sampling. , 1993, Biometrics.
[100] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[101] R. Carter Hill. Regression Discontinuity Designs , 2017 .
[102] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[103] Maria De Iorio,et al. Bayesian semiparametric inference for multivariate doubly-interval-censored data , 2010, 1101.1415.
[104] A. W. Kemp,et al. Kendall's Advanced Theory of Statistics. , 1994 .
[105] P. McCullagh,et al. Generalized Linear Models , 1984 .
[106] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[107] J. Pitman. Some developments of the Blackwell-MacQueen urn scheme , 1996 .
[108] D. Burr,et al. A Bayesian Semiparametric Model for Random-Effects Meta-Analysis , 2005 .
[109] Raquel Prado. Time series , 2009 .
[110] C. S. Reichardt,et al. Regression-discontinuity designs. , 2012 .
[111] J. Pitman. Exchangeable and partially exchangeable random partitions , 1995 .
[112] J. Pitman,et al. Size-biased sampling of Poisson point processes and excursions , 1992 .
[113] A. Lijoi,et al. On the stick-breaking representation of normalized inverse Gaussian priors , 2012 .
[114] G. Karabatsos. Fast Marginal Likelihood Estimation of the Ridge Parameter in Ridge Regression , 2015 .
[115] R. Hambleton,et al. Handbook of Modern Item Response Theory , 1997 .
[116] H. Ishwaran,et al. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .
[117] Robert A. Jacobs,et al. Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.
[118] G. Molenberghs,et al. Models for Discrete Longitudinal Data , 2005 .
[119] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[120] Elizabeth A Stuart,et al. Matching methods for causal inference: A review and a look forward. , 2010, Statistical science : a review journal of the Institute of Mathematical Statistics.
[121] L. Hedges. Distribution Theory for Glass's Estimator of Effect size and Related Estimators , 1981 .
[122] S. Walker,et al. A Bayesian nonparametric causal model for regression discontinuity designs , 2013, 1311.4482.
[123] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[124] R. Rosenthal. Parametric measures of effect size. , 1994 .
[125] Lancelot F. James,et al. Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .
[126] Christopher Holmes,et al. Bayesian Methods for Nonlinear Classification and Regressing , 2002 .
[127] Sylvia Richardson,et al. PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes. , 2013, Journal of statistical software.
[128] T. Rolski. On random discrete distributions , 1980 .
[129] P. Müller,et al. Bayesian Nonparametrics: An invitation to Bayesian nonparametrics , 2010 .
[130] J. Møller,et al. Handbook of Spatial Statistics , 2008 .
[131] S. Walker. Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .
[132] Peter Müller,et al. A Simple Class of Bayesian Nonparametric Autoregression Models. , 2013, Bayesian analysis.
[133] Rajeshwari Sundaram,et al. Flexible Bayesian Human Fecundity Models. , 2012, Bayesian analysis.
[134] D. Freedman,et al. On the histogram as a density estimator:L2 theory , 1981 .
[135] A. Pettitt,et al. Introduction to MCMC , 2012 .
[136] Alan E. Gelfand,et al. Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.
[137] D. Rubin,et al. Reducing Bias in Observational Studies Using Subclassification on the Propensity Score , 1984 .