Data-driven Estimation of Sinusoid Frequencies

Frequency estimation is a fundamental problem in signal processing, with applications in radar imaging, underwater acoustics, seismic imaging, and spectroscopy. The goal is to estimate the frequency of each component in a multisinusoidal signal from a finite number of noisy samples. A recent machine-learning approach uses a neural network to output a learned representation with local maxima at the position of the frequency estimates. In this work, we propose a novel neural-network architecture that produces a significantly more accurate representation, and combine it with an additional neural-network module trained to detect the number of frequencies. This yields a fast, fully-automatic method for frequency estimation that achieves state-of-the-art results. In particular, it outperforms existing techniques by a substantial margin at medium-to-high noise levels.

[1]  Kyuwan Choi,et al.  Detecting the Number of Clusters in n-Way Probabilistic Clustering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  J. D. George,et al.  Use of the complex exponential expansion as a signal representation for underwater acoustic calibration , 1978 .

[3]  Albert Berni,et al.  Target Identification by Natural Resonance Estimation , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[4]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[5]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[6]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[7]  Archontis Politis,et al.  Direction of Arrival Estimation for Multiple Sound Sources Using Convolutional Recurrent Neural Network , 2017, 2018 26th European Signal Processing Conference (EUSIPCO).

[8]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[9]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[10]  Ilan Ziskind,et al.  Detection of the number of coherent signals by the MDL principle , 1989, IEEE Trans. Acoust. Speech Signal Process..

[11]  Benjamin Recht,et al.  DeepLoco: Fast 3D Localization Microscopy Using Neural Networks , 2018, bioRxiv.

[12]  Julius O. Smith,et al.  Introduction to Digital Filters: with Audio Applications , 2007 .

[13]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[14]  Claire Boyer,et al.  Adapting to unknown noise level in sparse deconvolution , 2016, ArXiv.

[15]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[16]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[17]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[18]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[19]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[20]  Piero Barone,et al.  Prony methods in NMR spectroscopy , 1997, Int. J. Imaging Syst. Technol..

[21]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[22]  Arye Nehorai,et al.  Improved Source Number Detection and Direction Estimation With Nested Arrays and ULAs Using Jackknifing , 2013, IEEE Transactions on Signal Processing.

[23]  Tadeusz Lobos,et al.  Advanced spectrum estimation methods for signal analysis in power electronics , 2003, IEEE Trans. Ind. Electron..

[24]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[25]  Emanuel A. P. Habets,et al.  Broadband doa estimation using convolutional neural networks trained with noise signals , 2017, 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).

[26]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[27]  Carlos Fernandez-Granda,et al.  A Learning-based Framework for Line-spectra Super-resolution , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[29]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[30]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[31]  Georges Bienvenu Influence of the spatial coherence of the background noise on high resolution passive methods , 1979, ICASSP.

[32]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[33]  Randolph L. Moses,et al.  High resolution radar target modeling using a modified Prony estimator , 1992 .

[34]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[35]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[36]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[37]  David P. Wipf,et al.  From Bayesian Sparsity to Gated Recurrent Nets , 2017, NIPS.

[38]  Gongguo Tang,et al.  Demixing Sines and Spikes: Robust Spectral Super-resolution in the Presence of Outliers , 2016, ArXiv.

[39]  Wen Gao,et al.  Maximal Sparsity with Deep Networks? , 2016, NIPS.

[40]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[41]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[42]  Haizhou Li,et al.  A learning-based approach to direction of arrival estimation in noisy and reverberant environments , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.