Stability of simple periodic orbits and chaos in a Fermi-Pasta-Ulam lattice.
暂无分享,去创建一个
[1] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[2] M. N. Vrahatis,et al. Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.
[3] A. M. Lyapunov. The general problem of the stability of motion , 1992 .
[4] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[5] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .
[6] M. Ivanchenko,et al. q-Breathers and the Fermi-Pasta-Ulam problem. , 2005, Physical review letters.
[7] G. Berman,et al. The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.
[8] Carles Simó,et al. Hamiltonian systems with three or more degrees of freedom , 1999 .
[9] Tassos Bountis,et al. Chaotic Dynamics of n-Degree of Freedom Hamiltonian Systems , 2005, Int. J. Bifurc. Chaos.
[10] M. N. Vrahatis,et al. SMALLER ALIGNMENT INDEX (SALI): DETERMINING THE ORDERED OR CHAOTIC NATURE OF ORBITS IN CONSERVATIVE DYNAMICAL SYSTEMS , 2002, nlin/0210053.
[11] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[12] B. Chirikov,et al. Statistical Properties of a Nonlinear String , 1966 .
[13] Stephen Wiggins. Global Bifurcations and Chaos: Analytical Methods , 1988 .
[14] Ch. Skokos,et al. Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .
[15] M. A. Lieberman,et al. Time scale to ergodicity in the Fermi-Pasta-Ulam system. , 1995, Chaos.
[16] Michael N. Vrahatis,et al. How Does the Smaller Alignment Index (SALI) Distinguish Order from Chaos , 2003, nlin/0301035.
[17] N. Sait̂o,et al. Computer Studies on the Approach to Thermal Equilibrium in Coupled Anharmonic Oscillators. I. Two Dimensional Case , 1969 .
[18] Kosevich. Nonlinear sinusoidal waves and their superposition in anharmonic lattices. , 1993, Physical review letters.
[19] N. Metropolis,et al. Nonlinear coupled oscillators: Modal equation approach , 1973 .
[20] Tassos Bountis,et al. Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices , 1983 .
[21] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[22] S. Ulam,et al. Studies of nonlinear problems i , 1955 .