Machine Learning Techniques for Cervigram Image Analysis

1

[1]  Yanxi Liu,et al.  Cervical Cancer Detection Using SVM Based Feature Screening , 2004, MICCAI.

[2]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[5]  Razvan Pascanu,et al.  Pylearn2: a machine learning research library , 2013, ArXiv.

[6]  Xiaolei Huang,et al.  A Data Driven Approach to Cervigram Image Analysis and Classification , 2013 .

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  B. Dziura,et al.  Assisted primary screening using the automated ThinPrep Imaging System. , 2005, American journal of clinical pathology.

[9]  L. Mango,et al.  Design and methods of a population-based natural history study of cervical neoplasia in a rural province of Costa Rica: the Guanacaste Project. , 1997, Revista panamericana de salud publica = Pan American journal of public health.

[10]  Pietro Perona,et al.  Quickly Boosting Decision Trees - Pruning Underachieving Features Early , 2013, ICML.

[11]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[12]  Liana G. Apostolova,et al.  Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease Through Automated Hippocampal Segmentation , 2010, IEEE Transactions on Medical Imaging.

[13]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[14]  Jeff Heflin,et al.  Multimodal Entity Coreference for Cervical Dysplasia Diagnosis , 2015, IEEE Transactions on Medical Imaging.

[15]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Majid Mirmehdi,et al.  Comparative Exudate Classification Using Support Vector Machines and Neural Networks , 2002, MICCAI.

[17]  David C Wilbur,et al.  The Becton Dickinson FocalPoint GS Imaging System: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. , 2009, American journal of clinical pathology.

[18]  Sameer Antani,et al.  Digital Tools for Collecting Data from Cervigrams for Research and Training in Colposcopy , 2006, Journal of lower genital tract disease.

[19]  L Gaffikin,et al.  A critical assessment of screening methods for cervical neoplasia , 2005, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics.

[20]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[21]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .