Mapping summer soybean and corn with remote sensing on Google Earth Engine cloud computing in Parana state – Brazil
暂无分享,去创建一个
Jerry Adriani Johann | Willyan Ronaldo Becker | Jonathan Richetti | Alex Paludo | Laíza Cavalcante De Albuquerque Silva | Laíza Cavalcante de Albuquerque Silva | J. A. Johann | J. Richetti | A. Paludo | J. Johann
[1] L. Aparecido,et al. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil , 2016 .
[2] A. Huete,et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.
[3] Xin Du,et al. Remote sensing-based global crop monitoring: experiences with China's CropWatch system , 2014, Int. J. Digit. Earth.
[4] A. Gusso,et al. Reflectance-based Model for Soybean Mapping in United States at Common Land Unit Scale with Landsat 8 , 2019, European Journal of Remote Sensing.
[5] R. Lamparelli,et al. Mapping and discrimination of soya bean and corn crops using spectro-temporal profiles of vegetation indices , 2015 .
[6] Erivelto Mercante,et al. Mapping soya bean and corn crops in the State of Paraná, Brazil, using EVI images from the MODIS sensor , 2016 .
[7] Yuqi Bai,et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine , 2017 .
[8] Peng Gong,et al. Evaluation of global land cover maps for cropland area estimation in the conterminous United States , 2015, Int. J. Digit. Earth.
[9] R. Congalton,et al. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing , 2017 .
[10] Biswajeet Pradhan,et al. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. , 2019, The Science of the total environment.
[11] Wei Liu,et al. Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods , 2020 .
[12] Jerry Adriani Johann,et al. Uso de imagens do sensor orbital modis na estimação de datas do ciclo de desenvolvimento da cultura da soja para o estado do Paraná – Brasil , 2016 .
[13] Jiaojiao Tian,et al. Modified Superpixel Segmentation for Digital Surface Model Refinement and Building Extraction from Satellite Stereo Imagery , 2018, Remote. Sens..
[14] Willyan Ronaldo Becker,et al. DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES , 2017 .
[15] Ovidiu Csillik,et al. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels , 2017, Remote. Sens..
[16] J. A. Johann,et al. Estimativa de áreas com culturas de verão no Paraná, por meio de imagens multitemporais EVI/Modis , 2012 .
[17] V. Prudente,et al. Use of terrestrial remote sensing to estimate soybeans and beans biophysical parameters , 2019, Geocarto International.
[18] G. Foody. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices , 2010 .