Uncertain lightweight ontologies in a product-based possibility theory framework

Abstract This paper investigates an extension of lightweight ontologies, encoded here in DL-Lite languages, to the product-based possibility theory framework. We first introduce the language (and its associated semantics) used for representing uncertainty in lightweight ontologies. We show that, contrarily to a min-based possibilistic DL-Lite, query answering in a product-based possibility theory is a hard task. We provide equivalent transformations between the problem of computing an inconsistency degree (the key notion in reasoning from a possibilistic DL-Lite knowledge base) and the weighted maximum 2-Horn SAT problem. The last part of the paper provides an encoding of the problem of computing inconsistency degree in product-based possibility DL-Lite as a weighted set cover problem and the use of a greedy algorithm to compute an approximate value of the inconsistency degree. This encoding allows us to provide an approximate algorithm for answering instance checking queries in product-based possibilistic DL-Lite. Experimental studies show the quality of the approximate algorithms for both inconsistency degree computation and instance checking queries.

[1]  Kewen Wang,et al.  DL-Lite Ontology Revision Based on An Alternative Semantic Characterization , 2015, ACM Trans. Comput. Log..

[2]  Didier Dubois,et al.  Possibilistic Logic, Preferential Models, Non-monotonicity and Related Issues , 1991, IJCAI.

[3]  Thomas Lukasiewicz,et al.  Probabilistic Default Reasoning with Conditional Constraints , 2000, Annals of Mathematics and Artificial Intelligence.

[4]  Moisés Goldszmidt,et al.  On the Relation between Kappa Calculus and Probabilistic Reasoning , 1994, UAI.

[5]  Fernando Bobillo,et al.  DeLorean: A reasoner for fuzzy OWL 2 , 2012, Expert Syst. Appl..

[6]  Marie-Laure Mugnier Ontological Query Answering with Existential Rules , 2011, RR.

[7]  Alessandro Artale,et al.  DL-Lite with Attributes and Datatypes , 2012, ECAI.

[8]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[9]  Jianfeng Du,et al.  Extending description logics with uncertainty reasoning in possibilistic logic , 2007, Int. J. Intell. Syst..

[10]  Fernando Bobillo,et al.  Reasoning in Fuzzy OWL 2 with DeLorean , 2010, URSW.

[11]  Ian Horrocks,et al.  Fuzzy OWL: Uncertainty and the Semantic Web , 2005, OWLED.

[12]  Umberto Straccia,et al.  A Fuzzy Description Logic , 1998, AAAI/IAAI.

[13]  Guilin Qi,et al.  Instance-Driven Ontology Evolution in DL-Lite , 2015, AAAI.

[14]  Umberto Straccia,et al.  Towards a Crisp Representation of Fuzzy Description Logics under Lukasiewicz Semantics , 2008, ISMIS.

[15]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[16]  Thomas Lukasiewicz,et al.  Probabilistic Logic Programming under Inheritance with Overriding , 2001, UAI.

[17]  Giorgio Orsi,et al.  Heuristic Ranking in Tightly Coupled Probabilistic Description Logics , 2012, UAI.

[18]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[19]  Umberto Straccia,et al.  A fuzzy description logic for the semantic web , 2006, Fuzzy Logic and the Semantic Web.

[20]  Didier Dubois,et al.  Possibilistic logic : a retrospective and prospective view , 2003 .

[21]  Guilin Qi,et al.  Computing Inconsistency Measurements under Multi-Valued Semantics by Partial Max-SAT Solvers , 2010, KR.

[22]  H. Prade,et al.  Possibilistic logic , 1994 .

[23]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[24]  Diego Calvanese,et al.  DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.

[25]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[26]  Umberto Straccia,et al.  Description logic programs under probabilistic uncertainty and fuzzy vagueness , 2009, Int. J. Approx. Reason..

[27]  Giorgos Stoilos,et al.  Extending Fuzzy Description Logics for the Semantic Web , 2007, OWLED.

[28]  Jianfeng Du,et al.  PossDL - A Possibilistic DL Reasoner for Uncertainty Reasoning and Inconsistency Handling , 2010, ESWC.

[29]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[30]  Fernando Bobillo,et al.  Crisp Representations and Reasoning for Fuzzy Ontologies , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[31]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[32]  Bernhard Hollunder An alternative proof method for possibilistic logic and its application to terminological logics , 1994, Int. J. Approx. Reason..

[33]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[34]  Jochen Heinsohn,et al.  Probabilistic Description Logics , 1994, UAI.

[35]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[36]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[37]  Thomas Lukasiewicz,et al.  Probabilistic Deduction with Conditional Constraints over Basic Events , 2011, KR.

[38]  Salem Benferhat,et al.  Min-based Assertional Merging Approach for Prioritized DL-Lite Knowledge Bases , 2014, SUM.

[39]  Maurizio Lenzerini,et al.  Inconsistency-tolerant query answering in ontology-based data access , 2015, J. Web Semant..

[40]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[41]  Salem Benferhat,et al.  A refresher on DL-Lite logic , 2015 .

[42]  Jeff Z. Pan,et al.  Handling Imprecise Knowledge with Fuzzy Description Logic , 2006, Description Logics.

[43]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[44]  Guilin Qi,et al.  Probabilistic Reasoning in DL-Lite , 2012, PRICAI.

[45]  Umberto Straccia,et al.  Foundations of Fuzzy Logic and Semantic Web Languages , 2013, CILC.

[46]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[47]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[48]  Umberto Straccia,et al.  Transforming Fuzzy Description Logics into Classical Description Logics , 2004, JELIA.

[49]  Jeff Z. Pan,et al.  Expressive Querying over Fuzzy DL-Lite Ontologies , 2007, Description Logics.

[50]  Thomas Studer,et al.  Probabilistic ABox Reasoning: Preliminary Results , 2005, Description Logics.

[51]  Diego Calvanese,et al.  Ontologies and Databases: The DL-Lite Approach , 2009, Reasoning Web.

[52]  Didier Dubois,et al.  Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion , 2006, Fuzzy Logic and the Semantic Web.

[53]  Manfred Jaeger,et al.  Probabilistic Reasoning in Terminological Logics , 1994, KR.

[54]  Thomas Lukasiewicz,et al.  P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web , 2002, JELIA.

[55]  Wolfgang Spohn,et al.  The Laws of Belief - Ranking Theory and Its Philosophical Applications , 2012 .

[56]  E. W. Adams,et al.  The Logic of Conditionals: An Application Of Probability To Deductive Logic , 2010 .

[57]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy with Fuzzy Nominals and General Concept Inclusions. , 2008 .