THE STABILITY OF GMRES CONVERGENCE, WITH APPLICATION TO APPROXIMATE DEFLATION PRECONDITIONING

How does GMRES convergence change when the coefficient matrix is perturbed? Using spectral perturbation theory and resolvent estimates, we develop simple, general bounds that quantify the lag in convergence such a perturbation can induce. This analysis is particularly relevant to preconditioned systems, where an ideal preconditioner is only approximately applied in practical computations. To illustrate the utility of this approach, we combine our analysis with Stewart’s invariant subspace perturbation theory to develop rigorous bounds on the performance of approximate deflation preconditioning using Ritz vectors.

[1]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[2]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[3]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[4]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[5]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[6]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  E. B. Davies Approximate Diagonalization , 2007, SIAM J. Matrix Anal. Appl..

[9]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[10]  V. Simoncini,et al.  Convergence properties of block GMRES and matrix polynomials , 1996 .

[11]  John Rossi,et al.  Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..

[12]  Danny C. Sorensen,et al.  Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..

[13]  R. F. Rinehart The derivative of a matric function , 1956 .

[14]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[15]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[16]  Kim-Chuan Toh,et al.  The Chebyshev Polynomials of a Matrix , 1999, SIAM J. Matrix Anal. Appl..

[17]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[18]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[21]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[22]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[23]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[24]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[25]  Takashi Nodera,et al.  The DEFLATED-GMRES(m, k) method with switching the restart frequency dynamically , 2000, Numer. Linear Algebra Appl..

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[28]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[29]  Zhongxiao Jia,et al.  The Convergence of Generalized Lanczos Methods for Large Unsymmetric Eigenproblems , 1995, SIAM J. Matrix Anal. Appl..

[30]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[31]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[32]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[33]  Zdenek Strakos,et al.  GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..

[34]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[35]  A. Wathen,et al.  On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems , 1999 .

[36]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[37]  Josef Sifuentes,et al.  Preconditioned iterative methods for inhomogeneous acoustic scattering applications , 2010 .

[38]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[39]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[40]  Tosio Kato Perturbation theory for linear operators , 1966 .

[41]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[42]  Kevin Burrage,et al.  On the performance of various adaptive preconditioned GMRES strategies , 1998, Numer. Linear Algebra Appl..