Review of Metasurface Antennas for Computational Microwave Imaging

This article covers recent advances in the fusion of metasurface antenna design and computational imaging (CI) concepts for the realization of imaging systems that are planar, fast, and low cost. We start by explaining the operation of metamaterial antennas which can generate diverse radiation patterns. Their advantages and distinctions from previous antennas are elucidated. We then provide an intuitive overview of the CI framework and argue that metamaterial antennas are a near ideal platform for implementing such schemes at microwave frequencies. We describe two metamaterial antenna implementations: frequency diverse and electronically reconfigurable. The tradeoffs governing the design and operation of each architecture are examined. We conclude by examining the outlook of metamaterial antennas for microwave imaging and propose various future directions.

[1]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[2]  Matthew S. Reynolds,et al.  X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna , 2017 .

[3]  Matthew S. Reynolds,et al.  Enhanced Resolution Stripmap Mode Using Dynamic Metasurface Antennas , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Cyril Decroze,et al.  Synthetic aperture interferometric imaging using a passive microwave coding device , 2016, 2016 IEEE Conference on Antenna Measurements & Applications (CAMA).

[5]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[6]  David R. Smith,et al.  Learned Integrated Sensing Pipeline: Reconfigurable Metasurface Transceivers as Trainable Physical Layer in an Artificial Neural Network , 2019, Advanced science.

[7]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[8]  M. C. Johnson Opening Satellite Capacity to Consumers with Metamaterial Antennas , 2015 .

[9]  Benjamin Fuchs,et al.  Computational passive imaging of thermal sources with a leaky chaotic cavity , 2017 .

[10]  David R. Smith,et al.  Phaseless Radar Coincidence Imaging with a MIMO SAR Platform , 2019, Remote. Sens..

[11]  Juan M. Lopez-Sanchez,et al.  3-D radar imaging using range migration techniques , 2000 .

[12]  Thomas Fromenteze,et al.  Single-frequency near-field MIMO imaging , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[13]  M. Fink,et al.  Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations , 2014, Nature Photonics.

[14]  Laura Waller,et al.  DiffuserCam: Lensless Single-exposure 3D Imaging , 2017, ArXiv.

[15]  David R. Smith,et al.  Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas , 2017, 1704.02017.

[16]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[17]  P. Fellgett,et al.  On the ultimate sensitivity and practical performance of radiation detectors. , 1949, Journal of the Optical Society of America.

[18]  David R. Smith,et al.  Multistatic microwave imaging with arrays of planar cavities , 2016 .

[19]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[20]  N. Kundtz,et al.  Metamaterial surface antenna technology: Commercialization through diffractive metamaterials and liquid crystal display manufacturing , 2016, 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[21]  Fucai Zhang,et al.  Superresolution imaging via ptychography. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Patrick Bowen,et al.  Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna. , 2014, Applied optics.

[23]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Rama Chellappa,et al.  Compressed Synthetic Aperture Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[25]  Mats Gustafsson,et al.  Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels , 2017, IEEE Transactions on Antennas and Propagation.

[26]  A. Grbic,et al.  Modeling and Analysis of Printed-Circuit Tensor Impedance Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[27]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[28]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[29]  Albert J. P. Theuwissen,et al.  Computational imaging , 2012, 2012 IEEE International Solid-State Circuits Conference.

[30]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[31]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[32]  M. Tiebout,et al.  Advanced Microwave Imaging , 2012, IEEE Microwave Magazine.

[33]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[34]  Alexander G. Yarovoy,et al.  Three-Dimensional Near-Field MIMO Array Imaging Using Range Migration Techniques , 2012, IEEE Transactions on Image Processing.

[35]  Cyril Decroze,et al.  Passive Coding Technique Applied to Synthetic Aperture Interferometric Radiometer , 2017, IEEE Geoscience and Remote Sensing Letters.

[36]  David R. Smith,et al.  Printed Aperiodic Cavity for Computational and Microwave Imaging , 2016, IEEE Microwave and Wireless Components Letters.

[37]  T. Itoh,et al.  Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth , 2004, IEEE Transactions on Microwave Theory and Techniques.

[38]  F. Caminita,et al.  Leaky-wave based interpretation of the radiation from holographic surfaces , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[39]  Lorenz-Peter Schmidt,et al.  A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array , 2011, IEEE Transactions on Microwave Theory and Techniques.

[40]  Ettien Kpré,et al.  Computational Imaging for Compressive Synthetic Aperture Interferometric Radiometer , 2018, IEEE Transactions on Antennas and Propagation.

[41]  Matteo Pastorino,et al.  A computational technique based on a real-coded genetic algorithm for microwave imaging purposes , 2000, IEEE Trans. Geosci. Remote. Sens..

[42]  Thomas Fromenteze,et al.  Relaxation of Alignment Errors and Phase Calibration in Computational Frequency-Diverse Imaging using Phase Retrieval , 2018, IEEE Access.

[43]  Paolo Rocca,et al.  Compressive Sensing in Electromagnetics - A Review , 2015, IEEE Antennas and Propagation Magazine.

[44]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[45]  J. S. Colburn,et al.  A low profile electronically-steerable artificial-impedance-surface antenna , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[46]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[47]  David R. Smith,et al.  Gradient index circuit by waveguided metamaterials , 2009 .

[48]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[49]  Michael Boyarsky,et al.  Computational through-wall imaging using a dynamic metasurface antenna , 2019 .

[50]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[51]  Thomas Fromenteze,et al.  Synthetic aperture radar with dynamic metasurface antennas: a conceptual development. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  M. Fink,et al.  Building three-dimensional images using a time-reversal chaotic cavity , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  Qian Ma,et al.  Intelligent metasurface imager and recognizer , 2019, Light: Science & Applications.

[54]  Thomas Fromenteze,et al.  Experimental Synthetic Aperture Radar With Dynamic Metasurfaces , 2017, IEEE Transactions on Antennas and Propagation.

[55]  Matthew S. Reynolds,et al.  Waveguide-Fed Tunable Metamaterial Element for Dynamic Apertures , 2016, IEEE Antennas and Wireless Propagation Letters.

[56]  Xiang Li,et al.  Radar Coincidence Imaging: an Instantaneous Imaging Technique With Stochastic Signals , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Alexander Yarovoy,et al.  A Novel Approach to Full-Polarimetric Short-Range Imaging With Copolarized Data , 2016, IEEE Transactions on Antennas and Propagation.

[58]  Yonina C Eldar,et al.  Super-resolution and reconstruction of sparse sub-wavelength images. , 2009, Optics express.

[59]  D. Pommerenke,et al.  Portable Real-Time Microwave Camera at 24 GHz , 2012, IEEE Transactions on Antennas and Propagation.

[60]  R. Guzman-Quiros,et al.  Electronic Full-Space Scanning With 1-D Fabry–Pérot LWA Using Electromagnetic Band-Gap , 2012, IEEE Antennas and Wireless Propagation Letters.

[61]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[62]  David R. Smith,et al.  Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas. , 2018, Applied optics.

[63]  Andrea Massa,et al.  Wavelet-Based Compressive Imaging of Sparse Targets , 2015, IEEE Transactions on Antennas and Propagation.

[64]  M. Peichl,et al.  Passive microwave remote sensing for security applications , 2007, 2007 European Radar Conference.

[65]  Ke Chen,et al.  An Electronically Controlled Leaky-Wave Antenna Based on Corrugated SIW Structure With Fixed-Frequency Beam Scanning , 2019, IEEE Antennas and Wireless Propagation Letters.

[66]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[67]  Michael Boyarsky,et al.  Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies , 2016 .

[68]  David R. Smith,et al.  Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling , 2017 .

[69]  Arthur D. Yaghjw An Overview of Near-Field Antenna Measurements , 2009 .

[70]  Mehrdad Soumekh A system model and inversion for synthetic aperture radar imaging , 1992, IEEE Trans. Image Process..

[71]  David R. Smith,et al.  Computational imaging using a mode-mixing cavity at microwave frequencies , 2015 .

[72]  Thomas Fromenteze,et al.  Computational polarimetric microwave imaging. , 2017, Optics express.

[73]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[74]  William F. Moulder,et al.  Development of a high-throughput microwave imaging system for concealed weapons detection , 2016, 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST).

[75]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[76]  Matthew S. Reynolds,et al.  A K-Band Backscatter Fiducial for Continuous Calibration in Coherent Millimeter-Wave Imaging , 2018, IEEE Transactions on Microwave Theory and Techniques.

[77]  David R. Smith,et al.  Discrete Dipole Approximation Applied to Highly Directive Slotted Waveguide Antennas , 2016, IEEE Antennas and Wireless Propagation Letters.

[78]  David R. Smith,et al.  Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures , 2016 .

[79]  Laura Pulido-Mancera,et al.  Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface , 2018, 1807.11592.

[80]  David R. Smith,et al.  Two-Dimensional Dynamic Metasurface Apertures for Computational Microwave Imaging , 2018, IEEE Antennas and Wireless Propagation Letters.

[81]  David R. Smith,et al.  Analytical modeling of printed metasurface cavities for computational imaging , 2016 .

[82]  Laura Pulido-Mancera,et al.  Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis , 2019, IEEE Transactions on Antennas and Propagation.

[83]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[84]  N. Pitsianis,et al.  Static two-dimensional aperture coding for multimodal, multiplex spectroscopy. , 2006, Applied optics.

[85]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[86]  David R. Smith,et al.  Computational polarimetric localization with a radiating metasurface , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[87]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[88]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[89]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[90]  D. Psaltis,et al.  Imaging blood cells through scattering biological tissue using speckle scanning microscopy. , 2013, Optics express.

[91]  Laurent Daudet,et al.  Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.

[92]  Thomas Fromenteze,et al.  Frequency-Diverse Computational Microwave Phaseless Imaging , 2017, IEEE Antennas and Wireless Propagation Letters.

[93]  Daniel L Marks,et al.  Echelle crossed grating millimeter wave beam scanner. , 2014, Optics express.

[94]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[95]  Michael Boyarsky,et al.  Implementation and Characterization of a Two-Dimensional Printed Circuit Dynamic Metasurface Aperture for Computational Microwave Imaging , 2019, IEEE Transactions on Antennas and Propagation.

[96]  J. Bonache,et al.  Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines , 2005, IEEE Transactions on Microwave Theory and Techniques.

[97]  David R. Smith,et al.  Resolution of the Frequency Diverse Metamaterial Aperture Imager , 2015 .

[98]  Thomas Fromenteze,et al.  Single-frequency microwave imaging with dynamic metasurface apertures , 2017, 1704.03303.

[99]  J. Bertolotti,et al.  Non-invasive imaging through opaque scattering layers , 2012, Nature.

[100]  Michael Boyarsky,et al.  Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements , 2017 .

[101]  Peng Li,et al.  An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna , 2017, IEEE Antennas and Wireless Propagation Letters.

[102]  David R. Smith,et al.  Microwave Imaging Using a Disordered Cavity with a Dynamically Tunable Impedance Surface , 2016 .

[103]  Yvonne Freeh,et al.  Optical Imaging And Spectroscopy , 2016 .

[104]  Hojatollah Zamani,et al.  1.5-D Sparse Array for Millimeter-Wave Imaging Based on Compressive Sensing Techniques , 2018, IEEE Transactions on Antennas and Propagation.

[105]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[106]  Michael Boyarsky,et al.  Orthogonal Coded Active Illumination for Millimeter Wave, Massive-MIMO Computational Imaging With Metasurface Antennas , 2018, IEEE Transactions on Computational Imaging.

[107]  Zeev Zalevsky,et al.  Space–bandwidth product of optical signals and systems , 1996 .

[108]  Sherif Sayed Aboelyazeed Ahmed,et al.  Electronic mircowave imaging with planar multistatic arrays , 2013 .

[109]  Ryan Quarfoth,et al.  A design for an electronically-steerable holographic antenna with polarization control , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[110]  Tatsuo Itoh,et al.  Leaky-Wave Antennas , 2008, Proceedings of the IEEE.

[111]  Richard K. Moore,et al.  Microwave Remote Sensing - Active and Passive - Volume I - Microwave Remote Sensing Fundamentals and Radiometry , 1981 .

[112]  Michael Boyarsky,et al.  Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer. , 2019, Optics express.

[113]  D. Sievenpiper,et al.  A tunable impedance surface performing as a reconfigurable beam steering reflector , 2002 .

[114]  David R. Smith,et al.  Near-field multistatic radar reconstruction with stretched-phase Fourier accelerated multistatic imaging , 2017 .

[115]  David R. Smith,et al.  Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for Multiple-Input-Multiple-Output Radar Imaging , 2017, IEEE Access.

[116]  David R Smith,et al.  Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture. , 2018, Applied optics.

[117]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[118]  David R. Smith,et al.  Software Calibration of a Frequency-Diverse, Multistatic, Computational Imaging System , 2016, IEEE Access.

[119]  David R. Smith,et al.  Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets , 2016, IEEE Access.

[120]  Ali Molaei,et al.  Interferometric Sounding Using a Metamaterial-Based Compressive Reflector Antenna , 2018, IEEE Transactions on Antennas and Propagation.

[121]  Matthew S. Reynolds,et al.  Self-Jamming Mitigation via Coding for Millimeter-Wave Imaging With Direct Conversion Receivers , 2017, IEEE Microwave and Wireless Components Letters.

[122]  Thomas Fromenteze,et al.  Millimeter-wave spotlight imager using dynamic holographic metasurface antennas. , 2017, Optics express.

[123]  Thomas Fromenteze,et al.  Application of range migration algorithms to imaging with a dynamic metasurface antenna , 2016 .

[124]  David R. Smith,et al.  Phase and magnitude constrained metasurface holography at W-band frequencies. , 2016, Optics express.

[125]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[126]  David R. Smith,et al.  Learned Integrated Sensing Pipeline: Reconfigurable Metasurface Transceivers as Trainable Physical Layer in an Artificial Neural Network , 2019, Advanced science.

[127]  David R. Smith,et al.  Metamaterial microwave holographic imaging system. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[128]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[129]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[130]  David R. Smith,et al.  Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures , 2018, Optica.

[131]  David R. Smith,et al.  Near Field Scan Alignment Procedure for Electrically Large Apertures , 2017, IEEE Transactions on Antennas and Propagation.

[132]  M. Soumekh Fourier Array Imaging , 1994 .

[133]  Thomas Fromenteze,et al.  Phaseless computational imaging with a radiating metasurface. , 2016, Optics express.

[134]  S. Brunton,et al.  Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[135]  Min Liang,et al.  Reconfigurable Array Design to Realize Principal Component Analysis (PCA)-Based Microwave Compressive Sensing Imaging System , 2015, IEEE Antennas and Wireless Propagation Letters.

[136]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[137]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[138]  Gregory Allan,et al.  Sparse Array Optimization Using Simulated Annealing and Compressed Sensing for Near-Field Millimeter Wave Imaging , 2014, IEEE Transactions on Antennas and Propagation.